LIMITED PHASE II ENVIRONMENTAL SITE ASSESSMENT

14356-14400 PEARL ROAD STRONGSVILLE, CUYAHOGA COUNTY, OHIO

Draft Report: February 2011 Final Report: July 2011

Prepared for:

Cuyahoga County Department of Development 1701 East 12th Street, First Floor Cleveland, Ohio 44114

Prepared by:

6105 Heisley Road ♦ Mentor, Ohio 44060 440-357-1260 ♦ Fax 440-357-1510

TABLE OF CONTENTS

CUTIVE SUMMARY	i
Previous Assessments	2
METHODS OF INVESTIGATION	4
Monitoring Well Sampling	5
Soil Analytical Results	7
CONCLUSIONS	9
	INTRODUCTION BACKGROUND Physical Setting Previous Assessments METHODS OF INVESTIGATION Soil Boring Installation Monitoring Well Sampling Limitations and Deviations of Phase II ESA Activities QA/QC Sampling FINDINGS Geology Soil Analytical Results Groundwater Analytical Results QA/QC Analytical Results CONCLUSIONS

FIGURES

Figure 1: Site Location Map

Figure 2: Current Site Conditions

Figure 3: Soil Boring Location Map

Figure 4: Existing Monitoring Well Location Map

TABLES

Table 1: Summary of Soil Analytical Results

Table 2: Summary of Groundwater Analytical Results – Existing Monitoring Wells

Table 3: Summary of QA/QC Analytical Results

APPENDICES

Appendix A – Soil Boring Logs

Appendix B – Soil Laboratory Analytical Reports

Appendix C – Groundwater Laboratory Analytical Report

I:\2010\H10013-11\Phase II\Strongsville_Pearl Rd Phase II.doc

EXECUTIVE SUMMARY

During January and February 2011, HzW Environmental Consultants, LLC (HzW) conducted a Limited Phase II Environmental Site Assessment (ESA) of 14356-14400 Pearl Road, Strongsville, Cuyahoga County, Ohio (the Property). This study was conducted in accordance with HzW's proposal dated October 18, 2010, which was authorized by the Cuyahoga County Board of Commissioners (the Client) on November 18, 2010. The Phase II ESA study was conducted to evaluate subsurface conditions at the Property in accordance with HzW's Soil Sampling and Analysis Plan (SAP) approved by the United States Environmental Protection Agency (USEPA) on January 7, 2011, and HzW's Ground Water SAP approved by the USEPA on December 9, 2010.

Prior to the completion of Phase II ESA field activities, the Property was acquired by a new owner on January 24, 2011. As a result of the Property transfer, HzW was not able to complete all proposed Phase II ESA activities. Specifically, HzW was not able to complete the additional groundwater monitoring well installation as presented in HzW's Ground Water SAP and was directed by the Client to prepare a report based on the Phase II ESA activities completed to January 24, 2011.

The Property is located at the northwest corner of Pearl Road (U.S. Route 42) and Pierce Drive in Strongsville, Ohio. The Property is developed with one (1) multi-tenant commercial building that fronts Pearl Road and one (1) commercial building behind the multi-tenant building along Pierce Drive. The multi-tenant commercial buildings are vacant with the exception of one tenant space. Asphalt parking lots comprise the remainder of the Property.

Previous investigations were conducted at the Property by Atwell-Hicks Development Consultants (Atwell-Hicks). Based on the findings of the Phase I ESA, Atwell-Hicks identified five (5) "recognized environmental conditions" in connection with the Property including the former uses of two (2) on-site tenant spaces as dry cleaners, a former and current northern adjacent tenant space as a dry cleaner and the presence of foundry sand in the western and northwestern portions of the Property. As a result, Atwell-Hicks recommended conducting a Phase II Subsurface Investigation.

Atwell-Hicks initially conducted a Limited Phase II Subsurface Investigation in which concentrations of several chlorinated volatile organic compounds (VOCs) were detected in soil samples exceeding the Ohio Environmental Protection Agency's (EPA's) Voluntary Action Program (VAP) Leach Based Soil Values (LBSVs). Subsequent Additional Phase II Subsurface Investigation activities consisted of additional soil boring installation, groundwater monitoring well installation and soil gas sampling within portions of the multi-tenant building on-site. Concentrations of chlorinated VOCs were detected in soil in excess of VAP generic LBSVs. In addition, the detected concentration of PCE in one location at a depth of eight (8) feet below ground surface exceeded Ohio EPA's VAP Generic Direct Contact Soil Standards for commercial/industrial land use and construction/excavation activities. The detected concentrations of several chlorinated VOCs in groundwater samples from two monitoring wells exceeded Ohio EPA's VAP Generic Unrestricted Potable Use Standards (GUPUS). Concentrations of one or more VOCs were detected in soil gas samples. Based on the results of the indoor air modeling, Atwell-Hicks "determined that the VOC excess cancer risk calculated for the subject site is below the Ohio VAP target risk level of 1.0 E⁻⁵ but above the USEPA target risk level of 1.0E⁻⁶." In addition, Atwell-Hicks indicated that the hazard index for commercial workers at the Property were below the Ohio EPA VAP and USEPA target hazard index.

During January 2011, HzW conducted Phase II ESA activities at the Property, which consisted of soil boring installation and sampling of existing groundwater monitoring wells. Subsurface materials encountered within the borings consisted primarily of clay with gravel and shale fragments. Discontinuous lenses of damp or saturated soils were encountered at the Property.

Soil analytical results were compared to the Ohio EPA's VAP single-chemical Generic Direct Contact Soil Standards (GDCS) for commercial/industrial land use and construction/excavation activity scenarios, and the generic LBSVs. Concentrations of several VOCs were detected in several soil samples. The detected concentrations of tetrachloroethene in two borings exceed VAP single-chemical GDCS for commercial/industrial land use; however, the depth at which these soil samples were collected was below the point of compliance for commercial/industrial land use. None of the remaining concentrations of VOCs detected in soil samples exceeded VAP single-chemical GDCS for commercial/industrial land use. Similarly, the detected concentrations of VOCs were below VAP single-chemical GDCS for construction/excavation activities. Concentrations of several chlorinated VOCs were detected in soil in excess of VAP generic LBSVs at several locations.

Groundwater analytical results were compared to the Ohio EPA's VAP GUPUS. Concentrations of chlorinated VOCs were detected in two existing monitoring wells. The detected concentrations of several VOCs exceed VAP GUPUS in the two monitoring wells. Groundwater flow direction was not established at the Property by HzW during the portion of Phase II activities completed. However, should groundwater flow direction correlate with regional topography, the potential exists for impacted groundwater to migrate off site and pose an off-site vapor intrusion risk.

LIMITED PHASE II ENVIRONMENTAL SITE ASSESSMENT

14356-14400 Pearl Road Strongsville, Cuyahoga County, Ohio

(H10013-11)

1.0 INTRODUCTION

During January and February 2011, HzW Environmental Consultants, LLC (HzW) conducted a Limited Phase II Environmental Site Assessment (ESA) of 14356-14400 Pearl Road, Strongsville, Cuyahoga County, Ohio (the Property). The location of the Property is presented in **Figure 1**. This study was conducted in accordance with HzW's proposal dated October 18, 2010, which was authorized by the Cuyahoga County Board of Commissioners (the Client) on November 18, 2010. The Phase II ESA study was conducted to evaluate subsurface conditions at the Property in accordance with HzW's Soil Sampling and Analysis Plan (SAP) approved by the United States Environmental Protection Agency (USEPA) on January 7, 2011, and HzW's Ground Water SAP approved by the USEPA on December 9, 2010.

Prior to the completion of Phase II ESA field activities, the Property was acquired by a new owner on January 24, 2011. As a result of the Property transfer, HzW was not able to complete all proposed Phase II ESA activities (specifically, the additional groundwater monitoring well installation as presented in HzW's Ground Water SAP) and directed by the Client to prepare a report based on the Phase II ESA activities completed to January 24, 2011.

The Property is located at the northwest corner of Pearl Road (U.S. Route 42) and Pierce Drive in Strongsville, Ohio. The Property is developed with one (1) multi-tenant commercial building that fronts Pearl Road and one (1) commercial building behind the multi-tenant building along Pierce Drive. The one- and two-story multi-tenant commercial building is vacant with the exception of the 14356 Pearl Road tenant space, which remains occupied by the Shrimp and Lobster Market. The commercial building along Pierce Drive is vacant. Asphalt parking lots comprise the remainder of the Property. Land use surrounding the Property consists of a contiguous multi-tenant commercial building to the north, the right-of-way of Pearl Road to the east with commercial properties further east, the right-of-way of Pierce Drive to the south with commercial properties further south, and residential properties to the west. **Figure 2** presents the current site conditions at the Property.

2.0 BACKGROUND

2.1 Physical Setting

According to the 1994 Berea, Ohio, quadrangle United States Geological Survey (USGS) 7.5-minute topographic map, the Property is nearly level with an elevation of approximately 930 feet above National Geodetic Vertical Datum (NGVD). The topographic map indicates that regional topography slopes to the northwest and west towards a series of intermittent and perennial streams, one of which is identified as Baker Creek. The *Surficial Geology Map of the Cleveland South, Ohio, 30 x 60 minute quadrangle* prepared by the Ohio Department of Natural Resources (ODNR) indicates that the Property is underlain by an average of 20 feet of Wisconsin-aged till. The Wisconsin-age till consists of an unsorted mix of clay, silt, sand, gravel and boulders that overly Mississippian-age sandstone and shale of the Cuyahoga Formation, Berea Sandstone and Bedford Shale groups.

The Ground Water Resources Map of Cuyahoga County, Ohio, and the Geologic Map of Ohio, both of which are published by the ODNR, corroborates the subsurface geology. According to the Ground Water Resources Map, groundwater underlying the Property is obtained from the Cuyahoga Group or Chagrin, Ohio and Bedford Shales. Aquifers that yield three (3) to ten (10) gallons of groundwater per minute may be encountered less than 30 feet below land surface. The Geologic Map of Ohio indicates that the bedrock underlying the Property consists of Mississippian-age sandstone, siltstone and shale of the Cuyahoga Formation. Bedrock topography, according to the Bedrock Topography Map of the Berea, Ohio, quadrangle published by the ODNR, is located approximately 915 feet above NGVD (approximately 15 feet below land surface at the Property) within the vicinity of the Property and slopes to the north.

2.2 Previous Assessments

Several previous investigations have been conducted at the Property by Atwell-Hicks Development Consultants (Atwell-Hicks). Copies of a Phase I ESA dated September 4, 2008, prepared by Atwell-Hicks, and an Additional Phase II Subsurface Investigation dated December 4, 2008 prepared by Atwell-Hicks were provided to HzW for review. A summary of each investigation is presented below.

Phase I Environmental Site Assessment Report for the New Prototype Banking Center, 14356-14400 Pearl Road, Strongsville, Ohio, Prepared by Atwell-Hicks, September 4, 2008

Atwell-Hicks conducted a Phase I ESA of the Property in accordance with the American Society of Testing and Materials (ASTM) Designation E 1527-05 and 40 CFR Part 312 (All Appropriate Inquiry). At the time of the Atwell-Hicks Phase I ESA, the Property was occupied by several commercial tenants including Shrimp and Lobster (14356 Pearl Road), Super Hair Unisex Hair Design (14358 Pearl Road), Minka's Tailoring (14362 Pearl Road), Subway (14364 Pearl Road), Page One Realty (14400 Pearl Road, Suite #1), and William Thompson Jr., Attorney at Law (14400 Pearl Road, Suite #3). The tenant spaces located at 14360 Pearl Road, 14368 Pearl Road and 14400 Pearl Road, Suite #2 were vacant.

A review of the EDR report, an environmental database report, by Atwell-Hicks indicated that two (2) tenant spaces on the Property, 14356 and 14360 Pearl Road, and a tenant space on the northern adjacent property were included on the EDR Dry Cleaner database. These tenant spaces were occupied by several dry cleaners (San-i-System Cleaners Co. at 14356 Pearl Road; SS&A Highlander Center Inc. at 14360 Pearl Road; and Walters Coin Operated Dry Cleaning on the northern adjacent property) in 1967.

Based on a review of historic resources, Atwell-Hicks indicated that prior the 1952, the Property was developed as agricultural land. Commercial development – according to Atwell-Hicks – occurred in the early 1950s with a subsequent building constructed in the south-central portion in approximately 1963. Atwell-Hicks stated that dry cleaning facilities occupied the tenant spaces located at 14356 and 14360 Pearl Road in the late 1960s. In addition, the Atwell-Hicks Phase I ESA indicated that geotechnical sampling conducted by G2 Consulting Group, LLC, at the Property identified the presence of foundry sand at depths between one (1) and four (4) feet below ground surface in the west and northwest portions.

Based on the findings, Atwell-Hicks identified the following "recognized environmental conditions" in connection with the Property:

- 1. Former use of 14356 Pearl Road tenant space as a dry cleaning facility.
- 2. Former use of 14360 Pearl Road tenant space as a dry cleaning facility.

- 3. The presence of foundry sand in the western and northwestern portions of the Property as identified in a geotechnical investigation.
- 4. Former use of a northern adjacent tenant space (14308 Pearl Road) as a dry cleaning facility.
- 5. The current use of a northern adjacent tenant space (14312 Pearl Road) as a dry cleaning facility.

As a result, Atwell-Hicks recommended conducting a Phase II Subsurface Investigation of the "recognized environmental conditions".

Additional Phase II Subsurface Investigation for FTCL – Strongsville – 14400 Pearl Road, 14356-14400 Pearl Road, Strongsville, Ohio, Prepared by Atwell-Hicks, December 4, 2008

Subsequent to the Phase I ESA, Atwell-Hicks performed a Limited Phase II Subsurface Investigation in which concentrations of several volatile organic compounds (VOCs) including cis-1,2-dichloroethene (DCE), trans-1,2-DCE, tetrachloroethene (PCE), trichloroethene (TCE) and vinyl chloride were detected in soil samples exceeding the Ohio Environmental Protection Agency's (EPA's) Voluntary Action Program (VAP) Leach Based Soil Values (LBSVs). Based on the findings of the Limited Phase II Subsurface Investigation, Atwell-Hicks conducted additional Phase II activities to determine the extent of subsurface impacts to soil and/or groundwater.

Phase II activities conducted by Atwell-Hicks consisted of installing a total of 25 soil borings and five (5) groundwater monitoring wells and collection of four (4) sub-slab soil gas samples. In addition, six (6) soil borings were converted to temporary well points based on the evidence of groundwater. Six (6) soil borings were installed as part of the Limited Phase II Subsurface Investigation in September 2008, and the remaining 19 soil borings and five (5) monitoring wells were installed in November 2008.

Subsurface materials at the Property – as encountered by Atwell-Hicks – consisted of brown and gray silty clay to a depth of 13 to 14 feet below ground surface overlying gray weathered shale. Following installation of monitoring wells, groundwater was measured at depths between 2.5 and 10 feet below ground surface. Atwell-Hicks concluded that "[t]he groundwater encountered at the site was observed to be relatively inconsistent and perched within sand zones, clay seams and above the underlying shale bedrock." The monitoring well logs included in the Atwell-Hicks report indicate that wells MW-A and MW-D were installed into two feet of shale bedrock, wells MW-B and MW-C into 0.5 feet of shale bedrock, and well MW-E into one foot of shale bedrock. The monitoring wells installed further into shale bedrock produced more groundwater than the monitoring wells not installed as far into shale bedrock.

Soil analytical results indicated that concentrations of several VOCs were detected in soil samples. Concentrations of cis-1,2-DCE, trans-1,2-DCE, PCE, TCE and/or vinyl chloride in several borings exceeded Ohio EPA's VAP LBSVs (AH-2 [4'], AH-4 [3'], AH-100 [15'], AH-101 [8'], AH-102 [8'], AH-103 [10'], AH-104 [9'], AH-110 [8'] and AH-113 [14']). In addition, the detected concentration of PCE in AH-101 at a depth of eight (8) feet below ground surface exceeded Ohio EPA's VAP Generic Direct Contact Soil Standards for commercial/industrial land use and construction/excavation activities. The soil samples in which concentrations of VOCs that exceeded comparative standards were collected on the exterior portions of the Property. The table below indicates the highest concentrations of VOCs detected in soil that exceeded comparative standards.

Constituent	Highest Concentration
cis-1,2-Dichloroethene	73.0 mg/kg
trans-1,2-Dichloroethene	0.29 mg/kg
Tetrachloroethene	585 mg/kg
Trichloroethene	26.0 mg/kg
Vinyl chloride	0.18 mg/kg

Groundwater analytical results indicated concentrations of several VOCs were detected in groundwater samples. The detected concentrations of 1,1-DCE, cis-1,2-DCE, trans-1,2-DCE, PCE, TCE and/or vinyl chloride in groundwater samples from monitoring wells MW-D and MW-E exceeded Ohio EPA's VAP Generic Unrestricted Potable Use Standards. The highest concentrations of VOCs in groundwater samples were detected in monitoring well MW-E in the central portion of the Property. The table below indicates the highest concentrations of VOCs detected in groundwater that exceeded comparative standards.

Constituent	Highest Concentration
1,1-Dichloroethene	0.017 mg/L
cis-1,2-Dichloroethene	3.0 mg/L
trans-1,2-Dichloroethene	0.14 mg/L
Tetrachloroethene	33.0 mg/L
Trichloroethene	2.4 mg/L
Vinyl chloride	0.77 mg/L

Soil gas analytical results indicated that concentrations of one or more VOCs were detected in all four (4) soil gas samples collected within buildings on-site (14360, 14364 and 14400, Suite 2 Pearl Road tenant spaces). Atwell-Hicks conducted indoor air modeling by inputting the highest concentration in soil gas samples into the Johnson & Ettinger model. Based on the results of the indoor air modeling, Atwell-Hicks "determined that the VOC excess cancer risk calculated for the subject site is below the Ohio VAP target risk level of 1.0 E⁻⁵ but above the USEPA target risk level of 1.0E⁻⁶." In addition, Atwell-Hicks indicated that the hazard index for commercial workers at the Property were below the Ohio EPA VAP and USEPA target hazard index.

Atwell-Hicks concluded that potential human health risks exist at the Property based on the concentrations of VOCs detected in soils and groundwater. Further, Atwell-Hicks determined that the highest concentrations of VOCs are "located in the central portion of the property, beneath existing buildings and below or in close proximity to the proposed building footprint" at depths ranging from 4 to 15 feet below ground surface.

3.0 METHODS OF INVESTIGATION

During January 2011, HzW conducted Phase II ESA activities at the Property, which consisted of soil boring installation and sampling of existing groundwater monitoring wells. HzW installed 16 soil borings (designated HB-01 through HB-16) within the interior and rear exterior portions of the Property. Soil borings were installed to further delineate subsurface soil impacts on-site for the purpose of determining remedial activities. **Figure 3** presents the locations of the soil borings installed at the Property. In addition, HzW sampled four (4) existing groundwater monitoring wells installed by Atwell-Hicks, which were designated MW-B through MW-E. **Figure 4** presents the locations of the existing

groundwater monitoring wells at the Property. Further discussion of the methodologies utilized in Phase II ESA activities and limitations/modifications based on field conditions are presented below.

3.1 Soil Boring Installation

Soil borings were installed using manual or hydraulic Geoprobe® direct-push drilling and sampling techniques. Samples were collected utilizing a two-foot long (for manual boring installation) or four-foot long (for hydraulic boring installation) sampling device lined with clean, disposable acetate (plastic) liners, and driven into the subsurface to obtain a core sample of the subsurface material. Upon extraction from the soil, the plastic liner, with core intact, was removed from the sample tube. Each sample liner was opened and field screened in two-foot intervals for the presence of organic vapors using a MiniRAE 2000 photoionization detector (PID). Following completion of field screening activities, the two-foot interval from each boring exhibiting the highest concentration of volatile organic compounds (VOCs) as measured on the PID was sampled and field preserved by EPA Method 5035. The soil samples were placed in an iced cooler for preservation in the field and submitted to Test America Laboratories of North Canton, Ohio, for analysis of VOCs by EPA Method 8260.

A qualified environmental technician characterized each sample interval. Observations noted by the technician included the sample location and number, sample depth, formation material, color, moisture content, odor, and presence or absence of contamination based on visual/olfactory observation. The observations were recorded on a separate boring log completed for each bore installed.

Following completion of sampling activities, all borings installed on the Property were filled with granular bentonite, hydrated and finished to match the surrounding surface. All equipment used during soil sampling activities was decontaminated with a Liqui-Nox® and distilled water solution and triplerinsed with distilled water after each use to limit the potential for cross contamination.

3.2 Monitoring Well Sampling

Groundwater sampling was conducted in accordance with Ohio EPA's *Technical Guidance Manual for Hydrogeologic Investigations and Ground Water Monitoring*. Static groundwater levels were measured to within 0.01-foot accuracy using a Solinst[®] 101 Water Level Meter. The depth to water level and overall well depth were used to calculate the volume of groundwater in each well casing. Each well was purged and sampled using conventional bailing techniques. Using a dedicated polyethylene bailer and string, each monitoring well was purged a minimum of three (3) well volumes until field parameters stabilized. Field parameters including pH, conductivity and temperature were recorded upon removal of each well volume. All purge waters were transferred to a labeled 55-gallon drum. Once a minimum of three (3) well volumes have been removed and field parameters stabilized, groundwater samples were collected in the dedicated bailers and transferred directly to pre-labeled, laboratory-supplied containers. Groundwater samples were placed in an iced cooler for preservation in the field and submitted to GEO Analytical Laboratories, Inc. of Twinsburg, Ohio, for analysis of VOCs by EPA Method 8260.

Sampling personnel wore disposable nitrile gloves throughout the sampling process. All non-disposable sampling equipment will be decontaminated between sampling locations using a Liqui-Nox® liquid detergent and triple-rinsed with distilled water.

3.3 Limitations and Deviations of Phase II ESA Activities

The following limitations, deviations and/or field conditions were encountered during Phase II ESA activities:

- Approximately 12 inches of snow cover was present at the Property. The rear parking lot was plowed prior to initiating Phase II ESA activities; however, visual inspection of the asphalt parking lot was limited in areas by 1-2 inches of packed snow cover. The majority of the front parking lot remained snow covered and piles of snow were present along the east side.
- Prior to initiating Phase II ESA activities, the Property owner indicated that a drilling contractor was retained (by the Property owner) to install two (2) additional groundwater monitoring wells in the rear parking lot. During Phase II ESA activities, HzW observed the two (2) additional monitoring wells, which were installed adjacent to MW-D (installed by Atwell-Hicks) and in the vicinity/adjacent to MW-E (installed by Atwell-Hicks). HzW was not able to locate MW-E (installed by Atwell-Hicks) through visual observation or use of a metal detector and hand shovel. Since one of the two additional monitoring wells was installed within the vicinity or adjacent to MW-E, HzW sampled the adjacent additional monitoring well and identified the well as "MW-E". No additional information concerning the two additional monitoring wells was available from the Property owner or through a review of the Ohio Department of Natural Resources' Division of Soil and Water Resources.
- HzW was not able to locate monitoring well MW-A (installed by Atwell-Hicks) through visual observation, measurements from scaled maps or use of a metal detector in the front parking lot along Pearl Road. Therefore, monitoring well MW-A was not sampled during Phase II ESA activities.
- The terminal depths of interior soil borings was limited based on the subsurface conditions.

3.4 QA/QC Sampling

During Phase II ESA activities, HzW collected quality assurance/quality control (QA/QC) samples as presented in HzW's Soil SAP. The QA/QC samples collected by HzW consisted of a duplicate soil sample (designated HB-A [6-8']-011311), an equipment blank (designated EQUIP BLANK, referred to in the Soil SAP as a "Decon Blank") to assess the quality of decontamination procedures, and three (3) trip blanks (designated TB-01 through TB-03) to assess potential contamination during sample container shipment and storage. A "Bottle Blank" sample as outlined in the Soil SAP was not collected since EPA Method 5035 was employed.

No QA/QC samples were collected during sampling of existing groundwater monitoring wells. HzW anticipated collecting QA/QC samples associated with groundwater sampling as part of implementing HzW's Ground Water SAP.

4.0 FINDINGS

4.1 Geology

Soil borings at the Property were installed to terminal depths between six (6) and twelve (12) feet below ground surface (bgs). Subsurface materials encountered within the borings consisted primarily of dry, hard brown, brown and gray mottled or gray clay with small gravel and shale fragments. Lenses of gray and brown sandy clay, black fine sand or brown sand and gravel were encountered in HB-05 (0.4-

2'), HB-10 (2-4'), HB-11 (1-3'), HB-12 (2-3', 4-6'), HB-13 (2.5-3'), HB-14 (4-6'), HB-15 (2-4'), and HB-16 (0.3-3'). Although no consistent evidence of groundwater (i.e., saturated soils) was identified at the Property, discontinuous lenses of damp to saturated soils were encountered in HB-02 (3-4', 6-7'), HB-06 (4-6'), HB-07 (8-10'), HB-11 (10'), HB-12 (4-6'), HB-13 (7.7-8'), and HB-14 (2-4'). Slight discoloration was identified in several borings consisting of HB-06 (4-6'), HB-07 (4-6'), HB-10 (8-10'), HB-11 (4-8'), HB-13 (4-6'), HB-14 (2-4') and HB-15 (0.6-2'). In addition, slight odors were identified in several borings. A complete description of the subsurface materials encountered during boring installation is presented in the soil boring logs included in **Appendix A**.

4.2 Soil Analytical Results

A summary of soil laboratory analytical results for the soil samples from borings installed at the Property is presented in **Table 1**. A copy of the soil laboratory analytical report is included in **Appendix B**.

The anticipated future land use of the Property is commercial/industrial. Soil analytical results were compared to the Ohio Environmental Protection Agency's (EPA) Voluntary Action Program (VAP) single-chemical Generic Direct Contact Soil Standards (GDCS) for commercial/industrial land use and construction/excavation activity scenarios, and the derived Leach-Based Soil Values (LBSVs) for Soil Type III (silts, clays). The GDCS values were developed to be protective of the environment and human health based on predictive models regarding potential exposures to adults from dermal contact with soil, inhalation of vapors and particles from soil, and ingestion of soil. LBSVs were developed to be protective of potable water, based on predictive models of water transport, sediment transport, and pollutant fate, and represent the concentration of a constituent of concern that typically can remain in the soil such that leaching of the constituents to groundwater above Generic Unrestricted Potable Use Standards (GUPUS) will not occur. The reference standards associated with each detected chemical of concern are listed with the soil analytical results in **Table 1**.

The regulatory standards referenced as part of this project are for comparative use only and may not be directly applicable to the Property. The Ohio VAP standards referenced in this report apply only to sites that are participants in Ohio's Voluntary Action Program. However, because the Ohio EPA recognizes these standards as being protective of human health and the environment, they provide a useful tool for assessing environmental conditions at the Property.

Soil analytical results indicate that concentrations of several VOCs consisting of acetone, carbon disulfide, cis-1,2-DCE, PCE, toluene, TCE and/or vinyl chloride were detected in several soil samples. Although soil analytical results indicate that the detected concentrations of PCE in HB-08 (6-8'), 97.0 milligrams per kilogram (mg/kg), and in HB-11 (8-10'), 67.0 mg/kg, exceed VAP single-chemical GDCS for commercial/industrial land use, these soil samples were collected below the point of compliance for commercial/industrial land use. None of the remaining concentrations of VOCs detected in soil samples exceeded VAP single-chemical GDCS for commercial/industrial land use. Similarly, the detected concentrations of VOCs were below VAP single-chemical GDCS for construction/excavation activities.

Concentrations of several VOCs are present in soil in excess of VAP generic LBSVs. The detected concentrations of VOCs in the following soil samples exceeded VAP generic LBSVs:

- HB-08 (6-8'): cis-1,2-DCE; PCE; and TCE
- HB-09 (6-8'): cis-1,2-DCE
- HB-10 (8-10'): cis-1,2-DCE and TCE
- HB-11 (8-10'): PCE and TCE

- HB-12 (0-2'): cis-1,2-DCE and PCE
- HB-14 (8-10'): cis-1,2-DCE

4.3 Groundwater Analytical Results

A summary of groundwater laboratory analytical results for the groundwater samples collected from existing monitoring wells at the Property is presented in **Table 2**. A copy of the groundwater laboratory analytical report for existing monitoring wells is included in **Appendix B**.

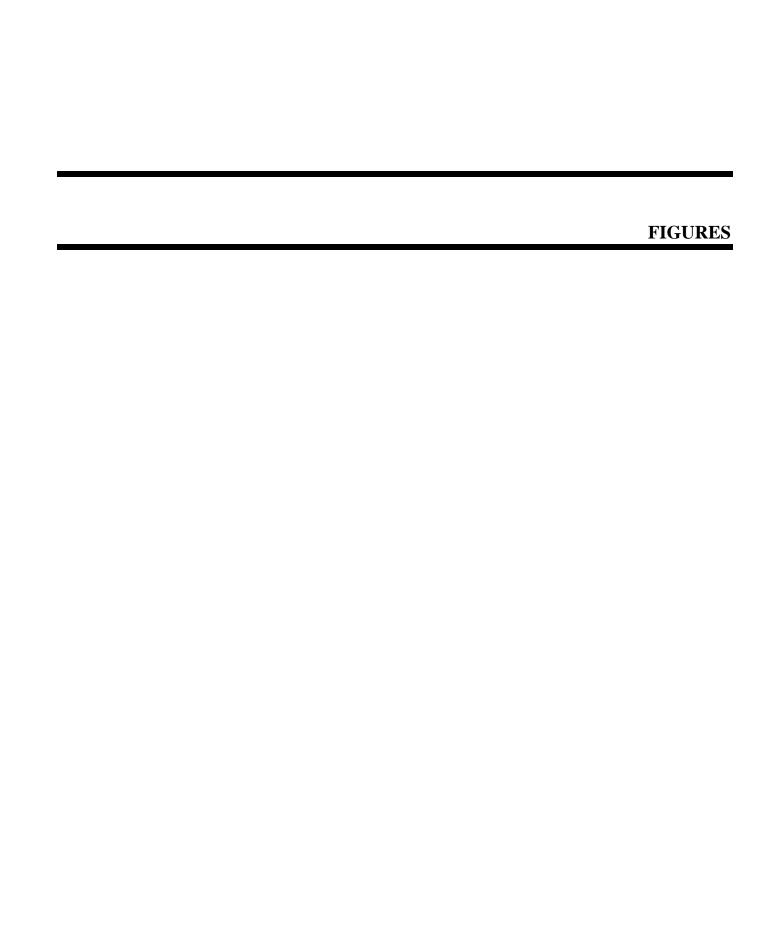
Groundwater analytical results were compared to the Ohio EPA's VAP Generic Unrestricted Potable Use Standards (GUPUS). The regulatory standards referenced as part of this project are for comparative use only and may not be directly applicable to the Property. The Ohio VAP standards referenced in this report apply only to sites that are participants in Ohio's Voluntary Action Program. However, because the Ohio EPA recognizes these standards as being protective of human health and the environment, they provide a useful tool for assessing environmental conditions at the Property.

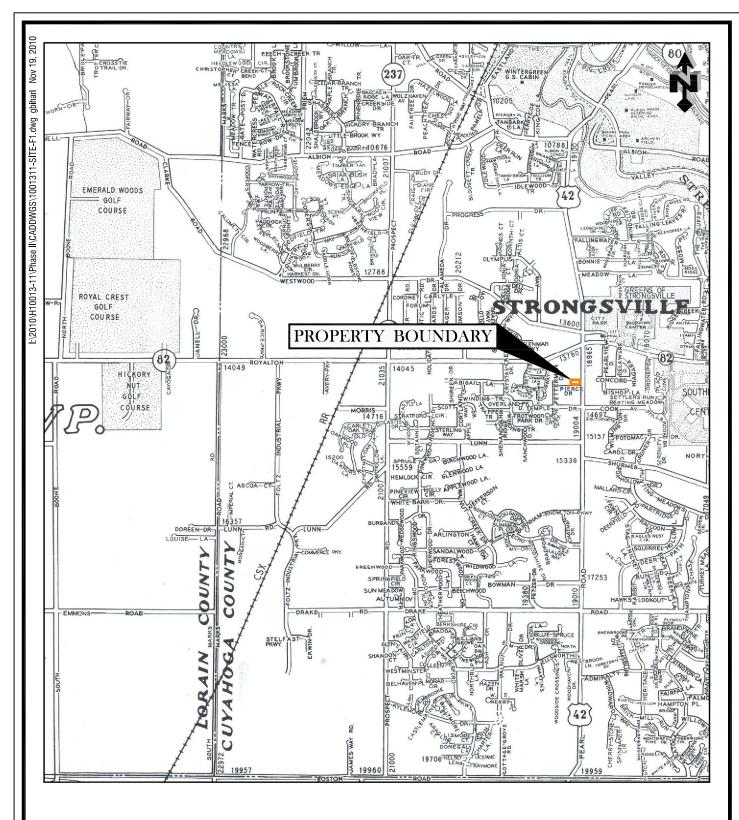
According to groundwater analytical results, concentrations of cis-1,2-DCE, trans-1,2-DCE, PCE, TCE and/or vinyl chloride were detected in MW-D and MW-E. The detected concentrations of cis-1,2-DCE, PCE, TCE and vinyl chloride in MW-D and MW-E exceeded VAP GUPUS.

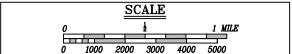
Based on groundwater analytical results collected by Atwell-Hicks and HzW, the concentrations of VOCs appear to continue leaching to groundwater. Groundwater flow direction was not established at the Property by HzW during the portion of Phase II activities completed. Based on a review of physical setting resources in Section 2.1, regional topography within the vicinity of the Property slopes northwest and west. Should groundwater flow direction correlate with regional topography, the potential exists for impacted groundwater to migrate off site and pose an off-site vapor intrusion risk.

4.4 QA/QC Analytical Results

A summary of the QA/QC sample analytical results is presented in **Table 3**. The laboratory analytical results for the QA/QC samples are included with the soil laboratory analytical report in Appendix A.


QA/QC analytical results indicate that one (1) VOC, toluene, was detected in the duplicate soil sample HB-A (6-8'). The duplicate soil sample was obtained from HB-06 (6-8') in which acetone was the only VOC detected. Although the same constituents were not detected in HB-06 (6-8') and the duplicate soil sample, the detection of acetone in HB-06 (6-8') and the detection of toluene in the duplicate soil sample from HB-06 were within an order of magnitude of the detection limits.


No concentrations of VOCs were detected in the equipment blank indicating that the quality of decontamination is sufficient to prevent possible cross-contamination. Concentrations of acetone were detected in all three (3) trip blanks. Acetone was detected in one (1) soil sample; therefore, the detection of acetone in the trip blanks may be attributable to laboratory contamination in preparation of the trip blanks or during shipment of the trip blanks and sample media to HzW.


5.0 CONCLUSIONS

Limited Phase II ESA activities were conducted at the Property, which consisted of further delineating subsurface soil impacts and assessing current groundwater conditions at existing groundwater monitoring wells. Soil analytical results indicate that concentrations of several VOCs consisting of cis-1,2-DCE, trans-1,2-DCE, PCE, TCE and vinyl chloride remain in soil in excess of VAP generic LBSVs west of the location at which Atwell-Hicks terminated assessment activities. In addition, the detected concentrations of PCE in HB-08 (6-8') and HB-11 (8-10') – although below the commercial/industrial land use point of compliance – are present in the subsurface in excess of the VAP single-chemical GDCS for commercial/industrial land use.

Groundwater analytical results indicate that concentrations of cis-1,2-DCE, trans-1,2-DCE, PCE, TCE and/or vinyl chloride in MW-D and MW-E exceed VAP GUPUS. Groundwater flow direction was not established at the Property by HzW during the portion of Phase II activities completed. However, should groundwater flow direction correlate with regional topography, the potential exists for impacted groundwater to migrate off site and pose an off-site vapor intrusion risk.

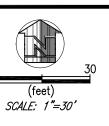
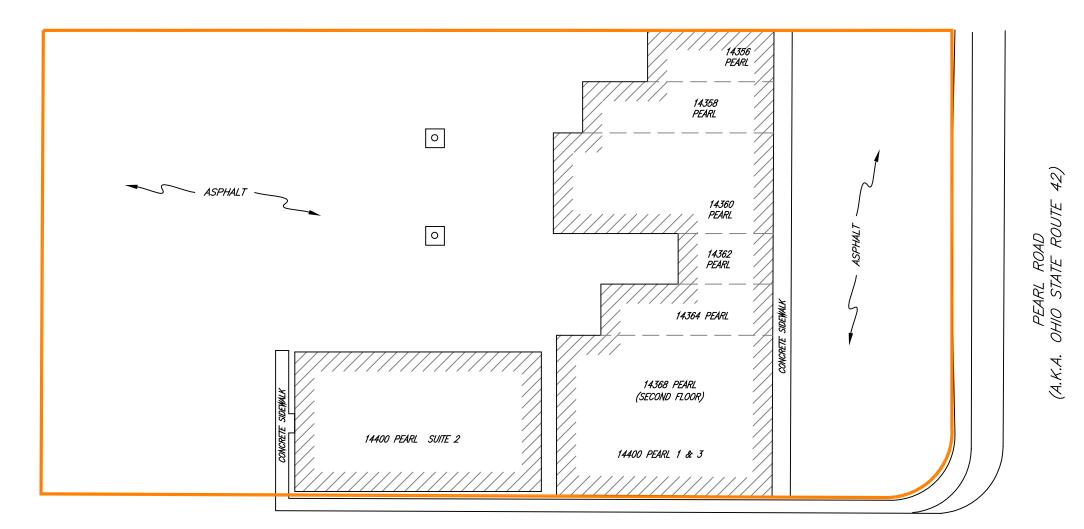


FIGURE 1

SITE LOCATION MAP 14356-14400 PEARL ROAD, STRONGSVILLE, CUYAHOGA COUNTY, OHIO


LEGEND

PROPERTY BOUNDARY

BUILDING

NOTE

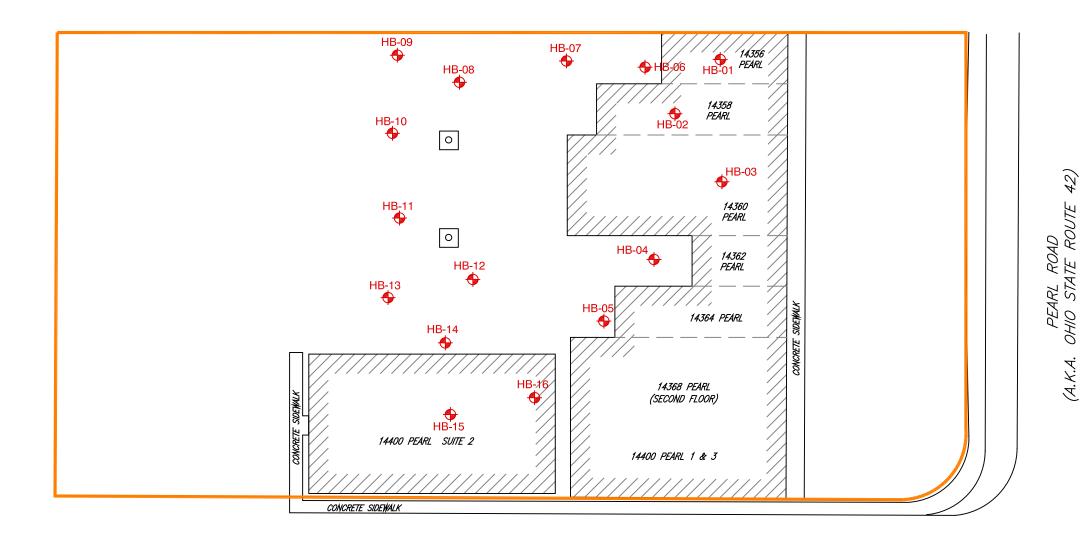
BASE MAP GENERATED AND TAKEN FROM ATWELL HICKS.

PIERCE DRIVE

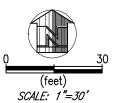
FIGURE 2

CURRENT SITE FEATURES
14356-14400 PEARL ROAD,
STRONGSVILLE, CUYAHOGA COUNTY, OHIO

LEGEND


BUILDING

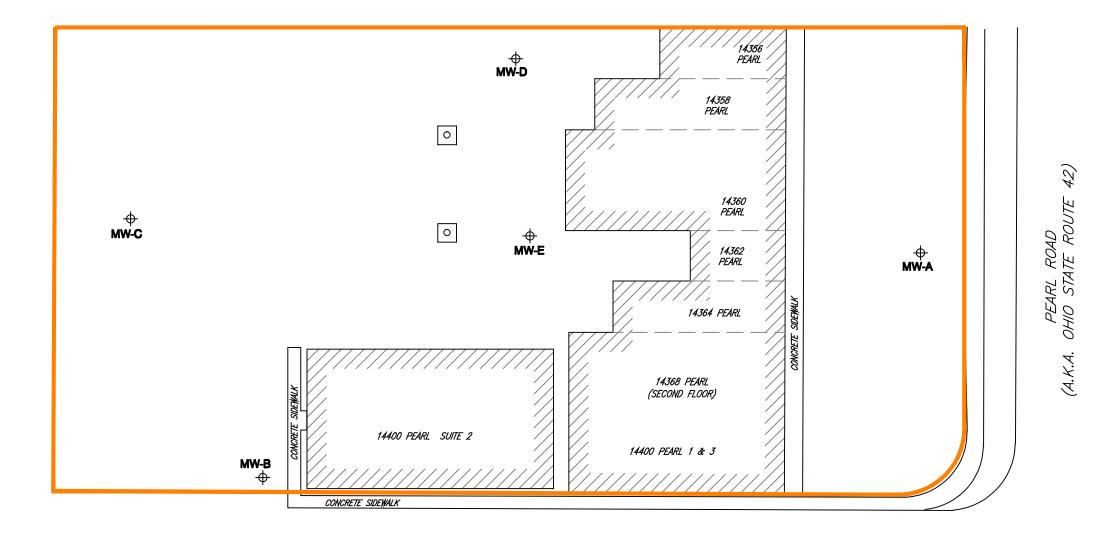
EXISTING SOIL BORING LOCATION


NOTE

BASE MAP GENERATED AND TAKEN FROM ATWELL HICKS.

PIERCE DRIVE

PROPERTY BOUNDARY

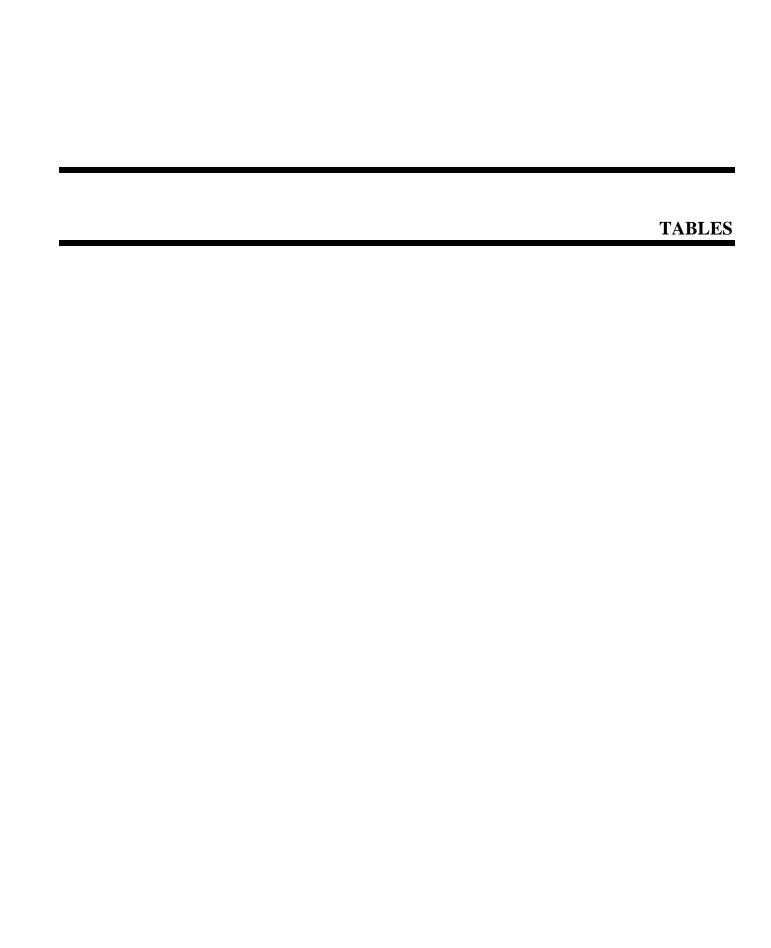

_______BUILDING

ф.

ATWELL MONITORING WELL LOCATION

NOTE

BASE MAP GENERATED AND TAKEN FROM ATWELL HICKS.



PIERCE DRIVE

FIGURE 4

EXISTING GROUNDWATER MONITORING WELL LOCATION MAP 14356-14400 PEARL ROAD, STRONGSVILLE, CUYAHOGA COUNTY, OHIO

Table 1 Summary of Soil Analytical Results 14356-14400 Pearl Road Strongsville, Ohio

(All results presented in mg/kg)

	HB-01 (2-4')-	HB-02 (4-6')-	HB-03 (6-8')-	HB-04 (4-6')-	HB-05 (0-2')-	HB-06 (6-8')-	HB-07 (6-8')-	HB-08 (6-8')-	HB-09 (6-8')-	HB-10 (8-10')-	HB-11 (8-10')-	HB-12 (0-2')-	HB-13 (4-6')-	HB-14 (8-10')-	HB-15 (4-6')-	HB-16 (4-6')-			
Sample Number	012011	011411	011411	012011	012011	011311	011311	011311	011311	011311	011311	011311	011311	011311	011411	011411	Comm./Ind.	Const./Exc.	1 1
Date Sampled	1/20/2011	1/14/2011	1/14/2011	1/20/2011	1/20/2011	1/13/2011	1/13/2011	1/13/2011	1/13/2011	1/13/2011	1/13/2011	1/13/2011	1/13/2011	1/13/2011	1/14/2011	1/14/2011	GDCS ¹	$GDCS^2$	LBSV ³
VOCs - EPA Method 8260																			
Acetone	< 0.021	< 0.017	< 0.02	<1.0	< 0.021	0.02	< 0.022	<12.0	< 0.88	< 0.92	< 8.2	<1.6	< 0.022	< 0.94	< 0.02	< 0.019	100,000	100,000	NGS
Carbon disulfide	< 0.005	< 0.004	< 0.005	< 0.26	< 0.005	< 0.004	< 0.006	<3.0	< 0.22	< 0.23	<2.1	< 0.4	0.009	< 0.23	0.012	< 0.005	1,400	190	NGS
cis-1,2-Dichloroethene	< 0.005	< 0.004	0.04	< 0.26	< 0.005	< 0.004	< 0.006	15.0	5.1	0.74	<2.1	0.84	0.053	1.3	< 0.005	< 0.005	2,200	2,200	0.12
Tetrachloroethene	< 0.005	< 0.004	< 0.005	< 0.26	< 0.005	< 0.004	0.006	97.0	< 0.22	< 0.23	67.0	1.6	< 0.006	< 0.23	< 0.005	< 0.005	53	220	0.27
Toluene	< 0.005	< 0.004	< 0.005	0.44	< 0.005	< 0.004	< 0.006	<3.0	< 0.22	< 0.23	<2.1	< 0.4	0.011	< 0.23	< 0.005	< 0.005	520	520	7.7
Trichloroethene	< 0.005	< 0.004	< 0.005	< 0.26	< 0.005	< 0.004	< 0.006	13.0	< 0.22	1.6	2.4	< 0.4	< 0.006	< 0.23	< 0.005	< 0.005	150	560	0.048
Vinyl chloride	< 0.005	< 0.004	0.008	< 0.26	< 0.005	< 0.004	< 0.006	< 3.0	< 0.22	< 0.23	<2.1	< 0.4	< 0.006	< 0.23	< 0.005	< 0.005	12	48	0.012

Bolded values indicate laboratory detections **Blue** values exceed VAP generic LBSVs

¹VAP Generic Direct Contact Soil Standards for Commercial/Industrial Land Use per OAC 3745-300-08(C)(3)(c), Table II

²VAP Generic Direct Contact Soil Standards for Construction/Excavation Activities per OAC 3745-300-08(C)(3)(d), Table III

³VAP Derived Generic Leach-Based Soil Values for Soil Class III per Ohio EPA Technical Guidance Document, October 2008 NGS = No generic standard

Table 2 Summary of Groundwater Analytical Results - Existing Monitoring Wells 14356-14400 Pearl Road Strongsville, Ohio

(All results presented in mg/L)

Well Number	MW-B	MW-C	MW-D	MW-E*	
Date Sampled	1/14/2011	1/14/2011	1/14/2011	1/14/2011	GUPUS ¹
VOCs - EPA Method 8260					
cis-1,2-Dichloroethene	< 0.005	< 0.005	0.683	2.3	0.07
trans-1,2-Dichloroethene	< 0.005	< 0.005	0.018	< 0.5	0.1
Tetrachloroethene	< 0.005	< 0.005	0.01	48.6	0.005
Trichloroethene	< 0.005	< 0.005	0.205	1.67	0.005
Vinyl chloride	< 0.002	< 0.002	0.12	0.314	0.002

Wells installed by Atwell-Hicks

Bolded values indicate laboratory detections

Red values exceed VAP GUPUS

^{*}Original MW-E installed by Atwell-Hicks not located. Additional well installed by drilling contractor in vicinity/location of MW-E sampled.

¹VAP Generic Unrestricted Potable Use Standards per OAC 3745-300-08(D)(3)(b) and (c), Tables V and VI

Table 3 Summary of QA/QC Sample Analytical Results 14356-14400 Pearl Road Strongsville, Ohio

	HB-A (6-8')-	EQUIP			
Sample Number	011311	BLANK	TB-01	TB-02	TB-03
Sample Date	1/13/2011	1/14/2011			
Media	Soil	Water	Water	Water	Water
Reporting Units	mg/kg	mg/L	mg/L	mg/L	mg/L
VOCs - EPA Method 8260					
Acetone	< 0.018	< 0.01	0.014	0.015	0.01
Toluene	0.005	< 0.001	< 0.001	< 0.001	< 0.001

APPENDIX A SOIL BORING LOGS

Project No.: H10013-11

Project: Phase II ESA

HzW Representative: JAD, TMF

Location: 14356-14400 Pearl Rd., Strongsville, Ohio

Drill Date: 01/20/2011

Drilled By: HzW Environmental

Drill Method: Manual Direct Push

Sample Method: Core

		Description		
Depth (feet)	Symbol		PID (ppm)	Remarks
0-		Ground Surface		
	24 24 22 24 24 24	CONCRETE		
1-		Brown CLAY w/ gravel, dry, soft	0.0	
2-				
3-		Gray CLAY, moist, soft	0.7	The 2-4 foot interval submitted for laboratory analysis
5-		Gray CLAY w/ shale fragments, dry, hard	0.3	
6-		Probe refusal at 6'		
7-		End of Bore		

Project No.: H10013-11

Project: Phase II ESA

HzW Representative: JAD, TMF, JAH HzW ENVIRONMENTAL CONSULTANTS, LLC

Location: 14356-14400 Pearl Rd., Strongsville, Ohio

Drill Date: 01/14/2011

Drilled By: HzW Environmental

Drill Method: Manual Direct Push

Sample Method: Core

		Description		
Depth (feet)	Symbol		PID (ppm)	Remarks
0-	1 (A) A	Ground Surface CONCRETE		
	N 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Brown CLAY w/ trace sand and small gravel, dry, firm		
1-			0.4	
_				
2-				
_				
3-		Gray silty CLAY w/ trace silt and sand, damp, soft	0.4	
-				
4-				
		Brown and gray mottled CLAY, little moisture to dry, hard		
-				
5-			0.4	The 4-6 foot interval submitted
				for laboratory analysis
_				
6-		Gray silty CLAY, saturated, soft		
7-		Brown and gray mottled CLAY, dry, hard	0.4	
8-		End of Bore		
-				
9-				

Project No.: H10013-11

Project: Phase II ESA

HzW Representative: JAD, TMF, JAH HzW ENVIRONMENTAL CONSULTANTS, LLC

Location: 14356-14400 Pearl Rd., Strongsville, Ohio

Drill Date: 01/14/2011

Drilled By: HzW Environmental

Drill Method: Manual Direct Push

Sample Method: Core

Ground Surface CONCRETE Brown CLAY w/ small gravel, dry, firm Gray CLAY w/ trace sand, dry, firm Gray W/ few brown mottles CLAY, dry, hard to very hard Gray w/ few brown mottles CLAY, dry, hard to very hard The 6-8 foot interval submitted for laboratory analysis End of Bore End of Bore			Description		
CONCRETE Brown CLAY w/ small gravel, dry, firm O.3 Gray CLAY w/ trace sand, dry, firm O.3 Gray W/ few brown mottles CLAY, dry, hard to very hard Frobe refusal at 8' End of Bore End of Bore	Depth (feet)	Symbol		PID (ppm)	Remarks
Brown CLAY w/ small gravel, dry, firm O.3 Gray CLAY w/ trace sand, dry, firm O.3 Gray w/ few brown mottles CLAY, dry, hard to very hard O.3 Frobe refusal at 8' End of Bore	0-	ر في الأنتر في	Ground Surface		
O.3 Gray CLAY w/ trace sand, dry, firm Gray w/ few brown mottles CLAY, dry, hard to very hard Gray w/ few brown mottles CLAY, dry, hard to very hard 7- Probe refusal at 8' End of Bore End of Bore		2 A A A A A A A A A A A A A A A A A A A			
3 Gray CLAY w/ trace sand, dry, firm 0.3 Gray w/ few brown mottles CLAY, dry, hard to very hard 0.3 Probe refusal at 8' End of Bore	-		Brown GEAT W. Shian graver, ary, min		
3 Gray CLAY w/ trace sand, dry, firm 0.3 Gray w/ few brown mottles CLAY, dry, hard to very hard 0.3 Probe refusal at 8' End of Bore	1-			0.3	
Gray CLAY w/ trace sand, dry, firm Gray w/ few brown mottles CLAY, dry, hard to very hard 0.3 Probe refusal at 8' End of Bore					
Gray CLAY w/ trace sand, dry, firm Gray w/ few brown mottles CLAY, dry, hard to very hard 0.3 Probe refusal at 8' End of Bore					
Gray CLAY W trace sand, dry, firm Gray w/ few brown mottles CLAY, dry, hard to very hard 0.3 Probe refusal at 8' End of Bore	2-				
Gray CLAY W trace sand, dry, firm Gray w/ few brown mottles CLAY, dry, hard to very hard 0.3 Probe refusal at 8' End of Bore					
Gray CLAY W trace sand, dry, firm Gray w/ few brown mottles CLAY, dry, hard to very hard 0.3 Probe refusal at 8' End of Bore	-				
Gray W/ few brown mottles CLAY, dry, hard to very hard 5	3-			0.3	
Gray w/ few brown mottles CLAY, dry, hard to very hard 0.3 7- Probe refusal at 8' End of Bore			Gray CLAY W/ trace sand, dry, firm		
Gray w/ few brown mottles CLAY, dry, hard to very hard 0.3 7- Probe refusal at 8' End of Bore	-				
5 — O.3 O.5 The 6-8 foot interval submitted for laboratory analysis End of Bore	4-				
Probe refusal at 8' End of Bore 0.5 The 6-8 foot interval submitted for laboratory analysis			Gray w/ few brown mottles CLAY, dry, hard to very hard		
Probe refusal at 8' End of Bore 0.5 The 6-8 foot interval submitted for laboratory analysis					
Probe refusal at 8' End of Bore 0.5 The 6-8 foot interval submitted for laboratory analysis	5-			0.3	
Probe refusal at 8' End of Bore O.5 The 6-8 foot interval submitted for laboratory analysis					
Probe refusal at 8' End of Bore O.5 The 6-8 foot interval submitted for laboratory analysis					
8 End of Bore	6-				
8 End of Bore					
8 End of Bore	-				
8 End of Bore	7-			0.5	The 6-8 foot interval submitted
End of Bore			Probe refusal at 8'		for laboratory analysis
End of Bore					
End of Bore	8-				
			End of Bore		
	9-				

Project No.: H10013-11

Project: Phase II ESA

 $\textbf{HzW Representative:} \ \mathsf{JAD}, \ \mathsf{TMF}$

Location: 14356-14400 Pearl Rd., Strongsville, Ohio

Drill Date: 01/20/2011

Drilled By: HzW Environmental

Drill Method: Hydraulic Direct Push

		Description		
Depth (feet)	Symbol		PID (ppm)	Remarks
0-		Ground Surface ASPHALT & crushed red BRICK		
1-		Brown CLAY, dry, soft	0.1	
2-				
3-		Gray CLAY w/ some sand lenses, moist, soft	0.2	
5-			0.3	The 4-6 foot interval submitted for laboratory analysis
6		Gray and brown mottled CLAY w/ shale fragments, dry, hard	0.1	
8-		Probe refusal at 8' End of Bore		
9-		LIIU OI DOIE		

Project No.: H10013-11

Project: Phase II ESA

HzW Representative: JAD, TMF

Location: 14356-14400 Pearl Rd., Strongsville, Ohio

Drill Date: 01/20/2011

Drilled By: HzW Environmental

Drill Method: Hydraulic Direct Push


		Description		
Depth (feet)	Symbol		PID (ppm)	Remarks
0-		Ground Surface ASPHALT & GRAVEL		
		Brown sandy CLAY, dry, soft		
1-			0.2	The 0-2 foot interval submitted for laboratory analysis
2-		Gray CLAY w/ small gravel, dry, soft		
_		Gray GEAT W/ Shiali gravel, Gry, Soft		
3-			0.1	
4-		Gray CLAY w/ sand lenses, dry, hard		
_				
5-			0.1	
6-		Gray CLAY w/ shale fragments, dry, hard		
7-			0.1	
-		Probe refusal at 8'		
8-		End of Bore		
9-				

Project No.: H10013-11

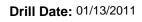
Project: Phase II ESA

HzW Representative: JAD, TMF, JAH HZW ENVIRONMENTAL CONSULTANTS, LLC

Location: 14356-14400 Pearl Rd., Strongsville, Ohio

Drilled By: HzW Environmental

Drill Method: Hydraulic Direct Push


		Description		
Depth (feet)	Symbol		PID (ppm)	Remarks
0-		Ground Surface		
		ASPHALT Brown CLAY w/ small gravel and trace sand, dry, hard	-	
1-			0.5	
'			0.5	
2-		Brown and gray mottled CLAY w/ small gravel, dry, firm		
-				
3-			0.5	
-				
4-		Light gray w/ brown mottles silty CLAY w/ trace sand, damp, firm, slight		
		discoloration		
5-			0.6	
			0.6	
6-		Brown w/ gray mottles CLAY w/ small gravel, dry, hard		
-				
7-			0.8	The 6-8 foot interval submitted
-				for laboratory analysis
8-				
		Brown w/ gray mottles CLAY w/ shale fragments, dry, very hard		
9-				
9-			0.6	
10-				
-				
11-		Proho refund et 12!	0.7	
		Probe refusal at 12'		Duplicate soil sample collected
12-				Duplicate soil sample collected from HB-06
		End of Bore		
13-				

Project No.: H10013-11

Project: Phase II ESA

HzW Representative: JAD, TMF, JAH HZW ENVIRONMENTAL CONSULTANTS, LLC

Location: 14356-14400 Pearl Rd., Strongsville, Ohio

Drilled By: HzW Environmental

Drill Method: Hydraulic Direct Push

		Description		
Depth (feet)	Symbol		PID (ppm)	Remarks
0-		Ground Surface		
	7 . 7	ASPHALT Coarse SAND w/ gravel	-	
		Brown CLAY w/ small gravel, dry, hard to very hard		
1-			0.4	
2-				
3-			0.5	
4-		Gray w/ brown mottles CLAY, dry, firm, discoloration/black streaking		
5-			0.5	
6-		Gray and brown mottled CLAY, dry, hard	-	
		Gray and brown modiced GEAT, dry, hard		
7-			0.6	The 6-8 foot interval submitted for laboratory analysis
8-		Gray and brown silty CLAY w/ gravel, saturated from 8-10', slightly moist from 10-		
9-		12', hard	0.4	
-				
10-				
11-			0.4	
12		End of Bore	+	
		Life of Bore		
13-				

Project No.: H10013-11

Project: Phase II ESA

HzW Representative: JAD, TMF, JAH HZW ENVIRONMENTAL

Location: 14356-14400 Pearl Rd., Strongsville, Ohio

Drill Date: 01/13/2011

Drilled By: HzW Environmental

Drill Method: Hydraulic Direct Push

Sample Method: Macro Core

		Description		
Depth (feet)	Symbol		PID (ppm)	Remarks
0-		Ground Surface ASPHALT		
-		Brown CLAY w/ gravel, dry, hard to very hard, slight odor from 0-2'		
1-			3.3	
2-				
3-			0.7	
4-		Gray w/ brown mottles CLAY, dry, hard		
5-			1.2	
6-				
7-			5.3	The 6-8 foot interval submitted for laboratory analysis
8-		Brown CLAY w/ shale fragments, dry, very hard		
9-			4.2	
10-				
11-			2.1	
12-		End of Bore		
13-				

CONSULTANTS, LLC

Project No.: H10013-11

Project: Phase II ESA

HzW Representative: JAD, TMF, JAH HZW ENVIRONMENTAL CONSULTANTS, LLC

Location: 14356-14400 Pearl Rd., Strongsville, Ohio

Drill Date: 01/13/2011

Drilled By: HzW Environmental

Drill Method: Hydraulic Direct Push

		Description		
Depth (feet)	Symbol		PID (ppm)	Remarks
0-		Ground Surface ASPHALT		
		GRAVEL/SLAG		
1-		Gray and brown mottled CLAY w/ small gravel, dry, firm	0.6	
2-		Very slight moisture at 4'		
3-			0.8	
4-		Brown and gray CLAY w/ trace silt, dry, firm Damp at 7.9-8'		
5-			0.6	
6-				
7-			7.1	The 6-8 foot interval submitted for laboratory analysis
8-		Brown and gray mottled CLAY w/ gravel to shale fragments, dry, hard to very hard		
9-			1.7	
10-				
11-			0.7	
12-				
13-			1.3	
14-		End of Bore		
15-				

Project No.: H10013-11

Project: Phase II ESA

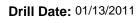
HzW Representative: JAD, TMF, JAH HZW ENVIRONMENTAL CONSULTANTS, LLC

Location: 14356-14400 Pearl Rd., Strongsville, Ohio

Drill Date: 01/13/2011

Drilled By: HzW Environmental

Drill Method: Hydraulic Direct Push


Remarks Ground Surface ASPHALT Black coarse sandy SLAG Brown and gray mottled CLAY w/ gravel, dry, hard Gray SLAY w/ trace silt, dry, firm Gray CLAY w/ trace silt, dry, firm Gray CLAY w/ trace silt, dry, firm Brown and gray mottled CLAY w/ light gray fine sand, dry, hard Description of relationation and very little odor Brown and gray mottled CLAY w/ light gray fine sand, dry, hard, slight discoloration and very little odor Brown and gray mottled CLAY w/ light gray fine sand, dry, hard, slight discoloration Brown and gray mottled CLAY w/ light gray fine sand, dry, hard, slight discoloration Brown and gray mottled CLAY w/ small gravel, dry, hard Description of the value of t			Description		
ASPHALT Black coarse sandy SLAG Brown and gray mottled CLAY w/ gravel, dry, hard Black fine SAND, dry, dense Gray sandy CLAY w/ gravel, dry, firm Gray CLAY w/ trace silt, dry, firm 5 Brown and gray mottled CLAY w/ few gravel, dry, hard Brown and gray mottled CLAY w/ light gray fine sand, dry, hard, slight discoloration and very little odor Brown CLAY w/ small gravel, dry, hard Brown CLAY w/ small gravel, dry, hard Brown and gray CLAY w/ shale fragments, dry, very hard Brown and gray CLAY w/ shale fragments, dry, very hard End of Bore	Depth (feet)	Symbol		PID (ppm)	Remarks
Black coarse sandy SLAG Brown and gray mottled CLAY w/ gravel, dry, hard Black fine SAND, dry, dense Gray sandy CLAY w/ gravel, dry, firm Gray CLAY w/ trace silt, dry, firm 5- Brown and gray mottled CLAY w/ few gravel, dry, hard 7- Brown and gray mottled CLAY w/ light gray fine sand, dry, hard, slight discoloration and very little odor Brown CLAY w/ small gravel, dry, hard 10- Brown CLAY w/ small gravel, dry, hard 11- Brown and gray CLAY w/ shale fragments, dry, very hard 13- Brown and gray CLAY w/ shale fragments, dry, very hard 13- End of Bore	0-				
Brown and gray mottled CLAY w/ gravel, dry, hard Black fine SAND, dry, dense Gray sandy CLAY w/ gravel, dry, firm Gray CLAY w/ trace silt, dry, firm 5-Brown and gray mottled CLAY w/ few gravel, dry, hard 7-Brown and gray mottled CLAY w/ light gray fine sand, dry, hard, slight discoloration and very little odor Brown CLAY w/ small gravel, dry, hard Description of the same of the sa				-	
Black fine SAND, dry, dense Gray sandy CLAY w/ gravel, dry, firm Gray CLAY w/ trace slit, dry, firm 5 Brown and gray mottled CLAY w/ few gravel, dry, hard Brown and gray mottled CLAY w/ light gray fine sand, dry, hard, slight discoloration and very little odor Brown CLAY w/ small gravel, dry, hard Description of the standard submitted for laboratory analysis Brown and gray CLAY w/ shale fragments, dry, very hard Brown and gray CLAY w/ shale fragments, dry, very hard End of Bore		h.##		1	
Black tine SAND, dry, dense Gray sandy CLAY w/ gravel, dry, firm O.5 Brown and gray mottled CLAY w/ few gravel, dry, hard Brown and gray mottled CLAY w/ light gray fine sand, dry, hard, slight discoloration and very little odor Brown CLAY w/ small gravel, dry, hard Description of Brown CLAY w/ shale fragments, dry, very hard Brown and gray CLAY w/ shale fragments, dry, very hard End of Bore	1-		Brown and gray mottled CLAY w/ gravel, dry, hard	0.3	
Black tine SAND, dry, dense Gray sandy CLAY w/ gravel, dry, firm O.5 Brown and gray mottled CLAY w/ few gravel, dry, hard Brown and gray mottled CLAY w/ light gray fine sand, dry, hard, slight discoloration and very little odor Brown CLAY w/ small gravel, dry, hard Description of Brown CLAY w/ shale fragments, dry, very hard Brown and gray CLAY w/ shale fragments, dry, very hard End of Bore	_				
Black tine SAND, dry, dense Gray sandy CLAY w/ gravel, dry, firm O.5 Brown and gray mottled CLAY w/ few gravel, dry, hard Brown and gray mottled CLAY w/ light gray fine sand, dry, hard, slight discoloration and very little odor Brown CLAY w/ small gravel, dry, hard Description of Brown CLAY w/ shale fragments, dry, very hard Brown and gray CLAY w/ shale fragments, dry, very hard End of Bore	2-				
Gray CLAY w/ trace silt, dry, firm 5 Brown and gray mottled CLAY w/ few gravel, dry, hard 7 Brown and gray mottled CLAY w/ light gray fine sand, dry, hard, slight discoloration and very little odor 9 Brown CLAY w/ small gravel, dry, hard 10 Brown CLAY w/ small gravel, dry, hard 11 0.4 Brown and gray CLAY w/ shale fragments, dry, very hard 13 Brown and gray CLAY w/ shale fragments, dry, very hard 14 End of Bore			Black fine SAND, dry, dense		
Gray CLAY w/ trace silt, dry, firm 5 Brown and gray mottled CLAY w/ few gravel, dry, hard 7 Brown and gray mottled CLAY w/ light gray fine sand, dry, hard, slight discoloration and very little odor 9 Brown CLAY w/ small gravel, dry, hard 10 Brown CLAY w/ small gravel, dry, hard 11 0.4 Brown and gray CLAY w/ shale fragments, dry, very hard 13 Brown and gray CLAY w/ shale fragments, dry, very hard 14 End of Bore					
Gray CLAY w/ trace silt, dry, firm 5 Brown and gray mottled CLAY w/ few gravel, dry, hard 0.5 Brown and gray mottled CLAY w/ light gray fine sand, dry, hard, slight discoloration and very little odor 2.5 The 8-10 foot interval submitted for laboratory analysis 10 Brown CLAY w/ small gravel, dry, hard 11 Brown and gray CLAY w/ shale fragments, dry, very hard 13 End of Bore	3-	///////	Gray sandy CLAY w/ gravel, dry, firm	0.5	
Gray CLAY w/ trace silt, dry, firm 5 -	-				
Brown and gray mottled CLAY w/ few gravel, dry, hard O.5 Brown and gray mottled CLAY w/ light gray fine sand, dry, hard, slight discoloration and very little odor Brown CLAY w/ small gravel, dry, hard Brown CLAY w/ small gravel, dry, hard D.4 Brown and gray CLAY w/ shale fragments, dry, very hard End of Bore D.5	4-		Carry CLAV with the soulle day. Since		
Brown and gray mottled CLAY w/ few gravel, dry, hard 8 Brown and gray mottled CLAY w/ light gray fine sand, dry, hard, slight discoloration and very little odor 9 Brown CLAY w/ small gravel, dry, hard 11 Brown and gray CLAY w/ shale fragments, dry, very hard 13 End of Bore Brown and gray CLAY w/ shale fragments, dry, very hard 14 End of Bore			Gray CLAY w/ trace siit, dry, firm		
Brown and gray mottled CLAY w/ few gravel, dry, hard 8 Brown and gray mottled CLAY w/ light gray fine sand, dry, hard, slight discoloration and very little odor 9 Brown CLAY w/ small gravel, dry, hard 11 Brown and gray CLAY w/ shale fragments, dry, very hard 13 End of Bore Brown and gray CLAY w/ shale fragments, dry, very hard 14 End of Bore	_				
Brown and gray mottled CLAY w/ few gravel, dry, hard Brown and gray mottled CLAY w/ light gray fine sand, dry, hard, slight discoloration and very little odor Brown CLAY w/ small gravel, dry, hard Brown and gray CLAY w/ shale fragments, dry, very hard End of Bore D.5 The 8-10 foot interval submitted for laboratory analysis	5			0.3	
Brown and gray mottled CLAY w/ few gravel, dry, hard Brown and gray mottled CLAY w/ light gray fine sand, dry, hard, slight discoloration and very little odor Brown CLAY w/ small gravel, dry, hard Brown and gray CLAY w/ shale fragments, dry, very hard End of Bore D.5 The 8-10 foot interval submitted for laboratory analysis					
Brown and gray mottled CLAY w/ light gray fine sand, dry, hard, slight discoloration and very little odor 9- Brown CLAY w/ small gravel, dry, hard 11- Brown and gray CLAY w/ shale fragments, dry, very hard 13- End of Bore 0.5 The 8-10 foot interval submitted for laboratory analysis	6-		Brown and gray mottled CLAV w/ few grayel dry hard	1	
Brown and gray mottled CLAY w/ light gray fine sand, dry, hard, slight discoloration and very little odor Brown CLAY w/ small gravel, dry, hard Brown and gray CLAY w/ shale fragments, dry, very hard Brown and gray CLAY w/ shale fragments, dry, very hard End of Bore	_		brown and gray modified GLAT williew graver, dry, mard		
Brown and gray mottled CLAY w/ light gray fine sand, dry, hard, slight discoloration and very little odor Brown CLAY w/ small gravel, dry, hard Brown and gray CLAY w/ shale fragments, dry, very hard Brown and gray CLAY w/ shale fragments, dry, very hard End of Bore	7_			0.5	
Brown and gray mottled CLAY w/ light gray tine sand, dry, hard, slight discoloration and very little odor 2.5 The 8-10 foot interval submitted for laboratory analysis Brown CLAY w/ small gravel, dry, hard 0.4 Brown and gray CLAY w/ shale fragments, dry, very hard 0.5 End of Bore	'			0.5	
Brown and gray mottled CLAY w/ light gray tine sand, dry, hard, slight discoloration and very little odor 2.5 The 8-10 foot interval submitted for laboratory analysis Brown CLAY w/ small gravel, dry, hard 0.4 Brown and gray CLAY w/ shale fragments, dry, very hard 0.5 End of Bore					
and very little odor 9 —	8-		Brown and gray mottled CLAY w/ light gray fine sand, dry, hard, slight discoloration		
Brown CLAY w/ small gravel, dry, hard 11— Brown and gray CLAY w/ shale fragments, dry, very hard 13— End of Bore for laboratory analysis 0.4	_		and very little odor		
Brown CLAY w/ small gravel, dry, hard 11— Brown and gray CLAY w/ shale fragments, dry, very hard 13— End of Bore for laboratory analysis 0.4	9-			2.5	The 8-10 foot interval submitted
Brown CLAY w/ small gravel, dry, hard 11— 12— Brown and gray CLAY w/ shale fragments, dry, very hard 13— End of Bore 14— End of Bore				2.0	
Brown CLAY w/ small gravel, dry, hard 11— 12— Brown and gray CLAY w/ shale fragments, dry, very hard 13— End of Bore 14— End of Bore	_				
Brown and gray CLAY w/ shale fragments, dry, very hard 13 End of Bore	10		Brown CLAY w/ small gravel, dry, hard		
Brown and gray CLAY w/ shale fragments, dry, very hard 0.5 End of Bore	-				
Brown and gray CLAY w/ shale fragments, dry, very hard 0.5 End of Bore	11-			0.4	
Brown and gray CLAY W shale fragments, dry, very hard 0.5 End of Bore					
Brown and gray CLAY W shale fragments, dry, very hard 0.5 End of Bore					
13— 14— End of Bore	12-		Brown and gray CLAY w/ shale fragments, dry, very hard		
End of Bore	-				
End of Bore	13-			0.5	
End of Bore					
End of Bore	, ,				
	14		End of Bore		
de					
15-	15-				

Project No.: H10013-11

Project: Phase II ESA

HzW Representative: JAD, TMF, JAH HZW ENVIRONMENTAL CONSULTANTS, LLC

Location: 14356-14400 Pearl Rd., Strongsville, Ohio

Drilled By: HzW Environmental

Drill Method: Hydraulic Direct Push

		Description		
Depth (feet)	Symbol		PID (ppm)	Remarks
0-		Ground Surface		
	///	ASPHALT		
1-		Brown CLAY w/ gravel, dry, firm	0.4	
'		Black fine SAND, dry, dense	0.4	
2-				
3-			0.5	
_		Brown CLAY w/ gravel, dry to damp at 4', firm		
4-		Gray and brown mottled CLAY w/ some small gravel, dry, firm to very hard, slight discoloration		
		dissiplication		
5-			0.7	
-				
6-				
-				
7-			1.6	
-				
8-		Decum CLAV w/few gravel, despite activisted at 401 hand alight adag		
		Brown CLAY w/ few gravel, damp to saturated at 10', hard, slight odor		
9-			2.6	The 8-10 foot interval submitted
		Boring terminated at 10' based on presence of groundwater		for laboratory analysis
10		·		
10-		End of Bore		
11-				

Project No.: H10013-11

Project: Phase II ESA

HzW Representative: JAD, TMF, JAH HZW ENVIRONMENTAL CONSULTANTS, LLC

Location: 14356-14400 Pearl Rd., Strongsville, Ohio

Drill Date: 01/13/2011

Drilled By: HzW Environmental

Drill Method: Hydraulic Direct Push

		Description		
Depth (feet)	Symbol		PID (ppm)	Remarks
0-		Ground Surface ASPHALT		
-		Brown sandy CLAY w/ gravel, dry, firm		
1-			0.7	The 0-2 foot interval submitted for laboratory analysis
2-		Black fine SAND, dry, dense		
3-		Brown and gray CLAY, very little moisture, firm	0.4	
4-		Black fine SAND, saturated, loose		
5-			0.4	
6-		Brown and gray mottled CLAY w/ small gravel, dry, hard		
7-			0.4	
8-		Brown and gray mottled CLAY w/ shale fragments from 10-12', dry, very hard		
9-			0.6	
10-				
11-			0.5	
12-		End of Bore		
13-				

Project No.: H10013-11

Project: Phase II ESA

HzW Representative: JAD, TMF, JAH HZW ENVIRONMENTAL

Location: 14356-14400 Pearl Rd., Strongsville, Ohio

Drill Date: 01/13/2011

Drilled By: HzW Environmental

Drill Method: Hydraulic Direct Push

Sample Method: Macro Core

		Description		
Depth (feet)	Symbol		PID (ppm)	Remarks
0-		Ground Surface ASPHALT		
1-		Brown CLAY w/ trace sand and gravel, dry, hard	0.5	
2-				
3-		Black fine SAND, dry, dense Brown and gray mottled CLAY, slight staining at 4'	- 0.5	
4		Dark gray w/ brown mottles CLAY, dry, firm to hard, slight discoloration	0.6	The 4-6 foot interval submitted for laboratory analysis
6-		Brown w/ gray mottles CLAY w/ small gravel, dry, hard Saturated at 7.7'	0.5	
8-		Boring terminated at 8' based on presence of groundwater End of Bore		
9-				

CONSULTANTS, LLC

Bore ID: HB-14

Project No.: H10013-11

Project: Phase II ESA

HzW Representative: JAD, TMF, JAH HZW ENVIRONMENTAL

Location: 14356-14400 Pearl Rd., Strongsville, Ohio

Drill Date: 01/13/2011

Drilled By: HzW Environmental

Drill Method: Hydraulic Direct Push

Sample Method: Macro Core

		Description		
Depth (feet)	Symbol		PID (ppm)	Remarks
0-		Ground Surface		
_	///	ASPHALT Brown CLAY w/ coarse sand and gravel, dry, firm	_	
1-		, , , , , , , , , , , , , , , , , , ,	0.4	
2-		Gray CLAY w/ small gravel and trace silt, damp, firm, slight discoloration		
3-			0.5	
4-		Gray w/ brown mottles sandy CLAY, dry, firm		
5— - 6—			0.4	
7-		Brown w/ few gray mottles CLAY w/ small gravel, dry, hard	0.4	
8-		Brown CLAY w/ shale fragments, dry, very hard		
		Blown CLAT w/ Shale hagments, dry, very hard		
9-			1.5	The 8-10 foot interval submitted for laboratory analysis
10-				-
11-		Probe refusal at 12'	0.4	
12-		End of Bore		
13-				

CONSULTANTS, LLC

Bore ID: HB-15

Project No.: H10013-11

Project: Phase II ESA

HzW Representative: JAD, TMF, JAH HzW ENVIRONMENTAL CONSULTANTS, LLC

Location: 14356-14400 Pearl Rd., Strongsville, Ohio

Drill Date: 01/14/2011

Drilled By: HzW Environmental

Drill Method: Manual Direct Push

Sample Method: Core

	_	Description		
Depth (feet)	Symbol		PID (ppm)	Remarks
0-	(4) N (5)	Ground Surface		
	7 7 7	CONCRETE		
		Brown coarse SAND		
		Gray and brown CLAY, dry, firm, slight discoloration	1	
1-			0.4	
'			0.4	
2-		Brown w/ few gray mottles sandy CLAY, dry, firm		
-				
3-			0.4	
-				
4-		Brown and gray mottled CLAY, dry, very hard		
		Brown and gray mothed GLAT, dry, very hard		
-				
5-			0.5	The 4-6 foot interval submitted
			0.0	for laboratory analysis
		Probe refusal at 6'		
6-		End of Bore		
-				
7-				

Bore ID: HB-16

Project No.: H10013-11

Project: Phase II ESA

HzW Representative: JAD, TMF, JAH HzW ENVIRONMENTAL CONSULTANTS, LLC

Location: 14356-14400 Pearl Rd., Strongsville, Ohio

Drill Date: 01/14/2011

Drilled By: HzW Environmental

Drill Method: Manual Direct Push

Sample Method: Core

		Description		
Depth (feet)	Symbol		PID (ppm)	Remarks
0-	\$ 1 \ A \ \ \$ \	Ground Surface CONCRETE		
	N 7 1 1 1			
-		Brown sandy CLAY w/ small gravel, dry, firm		
1-			0.4	
-				
2-	? <u>///////</u>	Brown coarse SAND w/ slag		
	• •			
-				
	7			
3-		Gray w/ few brown mottles CLAY, dry, firm	0.4	
4-				
4-		Brown w/ gray mottles CLAY, dry, hard		
5-			0.4	The 4-6 foot interval submitted
			0.4	for laboratory analysis
_				
		Probe refusal at 6'		
6-				
		End of Bore		
-				
7-				

APPENDIX B SOIL LABORATORY ANALYTICAL REPORTS

Affidavit by Certified Lab Pursuant to OAC 3745-300-13(M)

TestAmerica Laboratories, Inc.

State of Ohio

SS:

County of Stark

- I, Dorothy J. Leeson, being first duly sworn according to law, state that, to the best of my knowledge, information and belief:
- 1. I am an adult over the age of eighteen (18) years old and competent to testify herein.
- 2. I am employed by TestAmerica Laboratories, Inc. as Quality Assurance Manager and authorized to submit this affidavit on behalf of TestAmerica North Canton.
- The purpose of this submission is to support a request for a no further action letter or other aspects of a voluntary action, under Ohio's Voluntary Action Program (VAP) as set forth in Ohio Revised Code Chapter 3746 and Ohio Administrative Code (OAC) Chapter 3745-300.
- 4. TestAmerica North Canton performed analyses on behalf of **HZW Environmental Consultants** for a voluntary action at property known as **Strongsville**, **14356-14440 Pearl Road**, **Strongsville**, **Ohio**.
- 5. This affidavit applies to and is submitted with the following information, data, documents or reports for the property:

Laboratory Report Number A1A190466

Report Date
January 28, 2011

- TestAmerica North Canton was a VAP certified laboratory pursuant to OAC 3745-300-04 when it performed analyses referenced herein.
- 7. The analyses under this affidavit consist of certified data, as described by OAC 3745-300-04(B) with the exception of the analytes, parameter groups, or methods listed below: Not applicable.
- 8. TestAmerica North Canton performed the analyses within its current VAP certification. The laboratory was certified for each analyte, parameter group and method used at the time that it performed the analyses. The analyses were performed consistent with the laboratory's standard operating procedures and quality assurance program plan as approved under OAC 3745-300-04.

9. The information, data, documents, and reports identified under this affidavit are true, acqurate, and complete.

Further affiant sayeth naught.

ignature of Afriant

Sworn to before me this _____ day of _____

, ZO1

Jeffrey C. Smith

JEFFREY C. SMITH
Notary Public, State of Ohio
My Commission Expires Feb. 12, 2012

TestAmerica Laboratories, Inc.

ANALYTICAL REPORT

PROJECT NO. H10013-11

STRONGSVILLE

Lot #: A1A190466

Doug Wetzel

HZW Environmental Consultants 6105 Heisley Rd Mentor, OH 44060

TESTAMERICA LABORATORIES, INC.

Nathan Pietras

Project Manager

nathan.pietras@testamericainc.com

January 28, 2011

Nathan Pietras Project Manager 1/31/2011 10:00 AM

CASE NARRATIVE

A1A190466

The following report contains the analytical results for fourteen solid samples, one water sample and two quality control samples submitted to TestAmerica North Canton by HZW Environmental Consultants from the STRONGSVILLE Site, project number H10013-11. The samples were received January 19, 2011, according to documented sample acceptance procedures.

TestAmerica utilizes USEPA approved methods in all analytical work. The samples presented in this report were analyzed for the parameter(s) listed on the analytical methods summary page in accordance with the method(s) indicated. Preliminary results were provided to Doug Wetzel on January 26, 2011, and January 27, 2011. A summary of QC data for these analyses is included at the back of the report.

TestAmerica North Canton attests to the validity of the laboratory data generated by TestAmerica facilities reported herein. All analyses performed by TestAmerica facilities were done using established laboratory SOPs that incorporate QA/QC procedures described in the applicable methods. TestAmerica's operations groups have reviewed the data for compliance with the laboratory QA/QC plan, and data have been found to be compliant with laboratory protocols unless otherwise noted below.

All solid sample results are reported on an "as received" basis unless otherwise indicated by a dry weight adjustment footnote at the bottom of the analytical report page. The list of parameters which are never reported on a dry weight basis is included on the Sample Summary.

The test results in this report meet all NELAP requirements for parameters for which accreditation is required or available. Any exceptions to NELAP requirements are noted in this report. Pursuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory. This laboratory report is confidential and is intended for the sole use of TestAmerica and its client.

All parameters were evaluated to the reporting limit.

Please refer to the Quality Control Elements Narrative following this case narrative for additional quality control information.

If you have any questions, please call the Project Manager, Nathan Pietras, at 330-497-9396.

This report is sequentially paginated. The final page of the report is labeled as "END OF REPORT."

CASE NARRATIVE (continued)

SUPPLEMENTAL QC INFORMATION

SAMPLE RECEIVING

The temperature of the cooler upon sample receipt were 2.6 and 2.9°C.

GC/MS VOLATILES

There were no client requested Matrix Spike/Matrix Spike Duplicate (MS/MSD) samples in batch 1021283 and 1024167. Therefore, the laboratory has included a Laboratory Control Sample Duplicate (LCSD) in the QC batch. The LCSD recoveries, together with the LCS recoveries, are used to determine the reproducibility (precision) of the analytical system.

GENERAL CHEMISTRY

The analytical results met the requirements of the laboratory's QA/QC program.

QUALITY CONTROL ELEMENTS NARRATIVE

TestAmerica conducts a quality assurance/quality control (QA/QC) program designed to provide scientifically valid and legally defensible data. Toward this end, several types of quality control indicators are incorporated into the QA/QC program, which is described in detail in QA Policy, QA-003. These indicators are introduced into the sample testing process to provide a mechanism for the assessment of the analytical data. Program or agency specific requirements take precedence over the requirements listed in this narrative.

QC BATCH

Environmental samples are taken through the testing process in groups called QUALITY CONTROL BATCHES (QC batches). A QC batch contains up to twenty environmental samples of a similar matrix (water, soil) that are processed using the same reagents and standards. TestAmerica North Canton requires that each environmental sample be associated with a QC batch.

Several quality control samples are included in each QC batch and are processed identically to the twenty environmental samples.

For SW846/RCRA methods, QC samples include a METHOD BLANK (MB), a LABORATORY CONTROL SAMPLE (LCS) and, where appropriate, a MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD) pair or a MATRIX SPIKE/SAMPLE DUPLICATE (MS/DU) pair. If there is insufficient sample to perform an MS/MSD or an MS/DU, then a LABORATORY CONTROL SAMPLE DUPLICATE (LCSD) is included in the QC batch.

For 600 series/CWA methods, QC samples include a METHOD BLANK (MB), a LABORATORY CONTROL SAMPLE (LCS) and, where appropriate, a MATRIX SPIKE (MS). An MS is prepared and analyzed at a 10% frequency for GC Methods and at a 5% frequency for GC/MS methods.

LABORATORY CONTROL SAMPLE

The Laboratory Control Sample is a QC sample that is created by adding known concentrations of a full or partial set of target analytes to a matrix similar to that of the environmental samples in the QC batch. Multi peak responders may not be included in the target spike list due to co-elution. The LCS analyte recovery results are used to monitor the analytical process and provide evidence that the laboratory is performing the method within acceptable guidelines. All control analytes indicated by a bold type in the LCS must meet acceptance criteria. Failure to meet the established recovery guidelines requires the repreparation and reanalysis of all samples in the QC batch. Comparison of only the failed parameters from the first batch are evaluated. The only exception to the rework requirement is that if the LCS recoveries are biased high and the associated sample is ND (non-detected) for the parameter(s) of interest, the batch is acceptable.

At times, a Laboratory Control Sample Duplicate (LCSD) is also included in the QC batch. An LCSD is a QC sample that is created and handled identically to the LCS. Analyte recovery data from the LCSD is assessed in the same way as that of the LCS. The LCSD recoveries, together with the LCS recoveries, are used to determine the reproducibility (precision) of the analytical system. Precision data are expressed as relative percent differences (RPDs). If the RPD fails for an LCS/LCSD and yet the recoveries are within acceptance criteria, the batch is still acceptable.

METHOD BLANK

The Method Blank is a QC sample consisting of all the reagents used in analyzing the environmental samples contained in the QC batch. Method Blank results are used to determine if interference or contamination in the analytical system could lead to the reporting of false positive data or elevated analyte concentrations. All target analytes must be below the reporting limits (RL) or the associated sample(s) must be ND except under the following circumstances:

• Common organic contaminants may be present at concentrations up to 5 times the reporting limits. Common metals contaminants may be present at concentrations up to 2 times the reporting limit, or the reported blank concentration must be twenty fold less than the concentration reported in the associated environmental samples. (See common laboratory contaminants listed in the table.)

Volatile (GC or GC/MS)	Semivolatile (GC/MS)	Metals ICP-MS	Metals ICP Trace
Methylene Chloride,	Phthalate Esters	Copper, Iron, Zinc,	Copper, Iron, Zinc, Lead
Acetone, 2-Butanone		Lead, Calcium,	
		Magnesium, Potassium,	
		Sodium, Barium,	
		Chromium, Manganese	

QUALITY CONTROL ELEMENTS NARRATIVE (continued)

- Organic blanks will be accepted if compounds detected in the blank are present in the associated samples at levels 10 times the blank level. Inorganic blanks will be accepted if elements detected in the blank are present in the associated samples at 20 times the blank level.
- Blanks will be accepted if the compounds/elements detected are not present in any of the associated environmental samples.

Failure to meet these Method Blank criteria requires the repreparation and reanalysis of all samples in the QC batch.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE

A Matrix Spike and a Matrix Spike Duplicate are a pair of environmental samples to which known concentrations of a full or partial set of target analytes are added. The MS/MSD results are determined in the same manner as the results of the environmental sample used to prepare the MS/MSD. The analyte recoveries and the relative percent differences (RPDs) of the recoveries are calculated and used to evaluate the effect of the sample matrix on the analytical results. Due to the potential variability of the matrix of each sample, the MS/MSD results may not have an immediate bearing on any samples except the one spiked; therefore, the associated batch MS/MSD may not reflect the same compounds as the samples contained in the analytical report. When these MS/MSD results fail to meet acceptance criteria, the data is evaluated. If the LCS is within acceptance criteria, the batch is considered acceptable.

For certain methods, a Matrix Spike/Sample Duplicate (MS/DU) may be included in the QC batch in place of the MS/MSD. For the parameters (i.e. pH, ignitability) where it is not possible to prepare a spiked sample, a Sample Duplicate may be included in the QC batch. However, a Sample Duplicate is less likely to provide usable precision statistics depending on the likelihood of finding concentrations below the standard reporting limit. When the Sample Duplicate result fails to meet acceptance criteria, the data is evaluated.

For certain methods (600 series methods/CWA), a Matrix Spike is required in place of a Matrix Spike/Matrix Spike Duplicate (MS/MSD) or Matrix Spike/Sample Duplicate (MS/DU).

The acceptance criteria do not apply to samples that are diluted.

SURROGATE COMPOUNDS

In addition to these batch-related QC indicators, each organic environmental and QC sample is spiked with surrogate compounds. Surrogates are organic chemicals that behave similarly to the analytes of interest and that are rarely present in the environment. Surrogate recoveries are used to monitor the individual performance of a sample in the analytical system.

If surrogate recoveries are biased high in the LCS, LCSD, or the Method Blank, and the associated sample(s) are ND, the batch is acceptable. Otherwise, if the LCS, LCSD, or Method Blank surrogate(s) fail to meet recovery criteria, the entire sample batch is reprepared and reanalyzed. If the surrogate recoveries are outside criteria for environmental samples, the samples will be reprepared and reanalyzed unless there is objective evidence of matrix interference or if the sample dilution is greater than the threshold outlined in the associated method SOP.

The acceptance criteria do not apply to samples that are diluted. All other surrogate recoveries will be reported.

For the GC/MS BNA methods, the surrogate criterion is that two of the three surrogates for each fraction must meet acceptance criteria. The third surrogate must have a recovery of ten percent or greater.

For the Pesticide and PCB methods, the surrogate criterion is that one of two surrogate compounds must meet acceptance criteria. The second surrogate must have a recovery of 10% or greater.

TestAmerica Certifications and Approvals:

The laboratory is certified for the analytes listed on the documents below. These are available upon-request. California (#01144CA), Connecticut (#PH-0590), Florida (#E87225),

Illinois (#200004), Kansas (#E10336), Minnesota (#39-999-348), New Jersey (#OH001), New York (#10975), Nevada (#OH-000482008A), OhioVAP (#CL0024), Pennsylvania (#008), West Virginia (#210), Wisconsin (#999518190),NAVY, ARMY, USDA Soil Permit

N:\QAQC\Customer Service\Narrative - Combined RCRA CWA 032609.doc

EXECUTIVE SUMMARY - Detection Highlights

A1A190466

PARAMETER	RESULT	REPORTING LIMIT	UNITS	ANALYTICAL METHOD
HB-02(4-6')-011411 01/14/11 10:20	001			
Percent Solids	81.9	10.0	90	MCAWW 160.3 MOD
HB-03(6-8')-011411 01/14/11 09:50	002			
cis-1,2-Dichloroethene Vinyl chloride Percent Solids	40 7.7 8 1 .6	5.0 5.0 10.0	ug/kg ug/kg %	SW846 8260B SW846 8260B MCAWW 160.3 MOD
HB-06(6-8')-011311 01/13/11 14:15	003			
Acetone Percent Solids	20 85.3	17 10.0	ug/kg %	SW846 8260B MCAWW 160.3 MOD
HB-07(6-8')-011311 01/13/11 13:49	004			
Tetrachloroethene Percent Solids	5.8 81.7	5.6 10.0	ug/kg %	SW846 8260B MCAWW 160.3 MOD
HB-08(6-8')-011311 01/13/11 13:35	005			
cis-1,2-Dichloroethene Tetrachloroethene Trichloroethene Percent Solids	15000 97000 13000 83.2	3000 3000 3000 10.0	ug/kg ug/kg ug/kg %	SW846 8260B SW846 8260B SW846 8260B MCAWW 160.3 MOD
HB-09(6-8')-011311 01/13/11 11:10	006			
cis-1,2-Dichloroethene Percent Solids	5100 85.2	220 10.0	ug/kg %	SW846 8260B MCAWW 160.3 MOD
HB-10(8-10')-011311 01/13/11 11:38	007			
cis-1,2-Dichloroethene Trichloroethene Percent Solids	740 1600 85.6	230 230 10.0	ug/kg ug/kg %	SW846 8260B SW846 8260B MCAWW 160.3 MOD
HB-11(8-10')-011311 01/13/11 11:55	008			·
Tetrachloroethene Trichloroethene Percent Solids	67000 2400 85.3	2100 2100 10.0	ug/kg ug/kg %	SW846 8260B SW846 8260B MCAWW 160.3 MOD
(Conti	inued on next	page)		

EXECUTIVE SUMMARY - Detection Highlights

A1A190466

PARAMETER	RESULT	REPORTING	UNITS	ANALYTICAL METHOD	
HB-12(0-2')-011311 01/13/11 13:10	009				
cis-1,2-Dichloroethene Tetrachloroethene Percent Solids	840 1600 87.9	400 400 10.0	ug/kg ug/kg %	SW846 8260B SW846 8260B MCAWW 160.3 MOD	
HB-13(4-6')-011311 01/13/11 12:05	010				
Carbon disulfide cis-1,2-Dichloroethene Toluene Percent Solids	8.8 53 11 72.7	5.6 5.6 5.6 10.0	ug/kg ug/kg ug/kg %	SW846 8260B SW846 8260B SW846 8260B MCAWW 160.3 MOD	
HB-14(8-10')-011311 01/13/11 12:35 011					
cis-1,2-Dichloroethene Percent Solids	1300 86.6	230 10.0	ug/kg %	SW846 8260B MCAWW 160.3 MOD	
HB-15(4-6')-011411 01/14/11 11:40	012				
Carbon disulfide Percent Solids	12 78.0	5.0 10.0	ug/kg %	SW846 8260B MCAWW 160.3 MOD	
HB-16(4-6')-011411 01/14/11 11:24 013					
Percent Solids	80.3	10.0	8	MCAWW 160.3 MOD	
HB-A(6-8')-011311 01/13/11 014					
Toluene Percent Solids	4.9 84.8	4.5 10.0	ug/kg %	SW846 8260B MCAWW 160.3 MOD	
TB-01 01/14/11 016					
Acetone	14	10	ug/L	SW846 8260B	
TB-02 01/14/11 017					
Acetone	15	10	ug/L	SW846 8260B	

ANALYTICAL METHODS SUMMARY

A1A190466

PARAMETER ANALYTICAL METHOD

Total Residue as Percent Solids Volatile Organics by GC/MS

MCAWW 160.3 MOD SW846 8260B

References:

MCAWW "Methods for Chemical Analysis of Water and Wastes",

EPA-600/4-79-020, March 1983 and subsequent revisions.

SW846 "Test Methods for Evaluating Solid Waste, Physical/Chemical

Methods", Third Edition, November 1986 and its updates.

SAMPLE SUMMARY

A1A190466

WO #	SAMPLE#	CLIENT SAMPLE ID	SAMPLED DATE	SAMP TIME
MDGK3	001	HB-02(4-6')-011411	01/14/11	10:20
MDGLF	002	HB-03(6-8')-011411	01/14/11	09:50
MDGLG	003	HB-06(6-8')-011311	01/13/11	14:15
MDGLH	004	HB-07(6-8')-011311	01/13/11	13:49
MDGLL	005	HB-08(6-8')-011311	01/13/11	13:35
MDGLM	006	HB-09(6-8')-011311	01/13/11	11:10
MDGLN	007	HB-10(8-10')-011311	01/13/11	11:38
MDGLQ	800	HB-11(8-10')-011311	01/13/11	11:55
MDGLR	009	HB-12(0-2')-011311	01/13/11	13:10
MDGLT	010	HB-13(4-6')-011311	01/13/11	12:05
MDGLW	011	HB-14(8-10')-011311	01/13/11	12:35
MDGLX	012	HB-15(4-6')-011411	01/14/11	11:40
MDGL1	013	HB-16(4-6')-011411	01/14/11	11:24
MDGL3	014	HB-A(6-8')-011311	01/13/11	
MDGL4	015	EQUIPMENT BLANK	01/13/11	10:35
MDGMA	016	TB-01	01/14/11	
MDGME	017	TB-02	01/14/11	
MOTE (2) -			

NOTE(S):

- The analytical results of the samples listed above are presented on the following pages.
- All calculations are performed before rounding to avoid round-off errors in calculated results.
- Results noted as "ND" were not detected at or above the stated limit.
- $\hbox{- This report must not be reproduced, except in full, without the written approval of the laboratory.}\\$
- Results for the following parameters are never reported on a dry weight basis: color, corrosivity, density, flashpoint, ignitability, layers, odor, paint filter test, pH, porosity pressure, reactivity, redox potential, specific gravity, spot tests, solids, solubility, temperature, viscosity, and weight.

Client Sample ID: HB-02(4-6')-011411

GC/MS Volatiles

Lot-Sample #...: A1A190466-001 Work Order #...: MDGK31AC Matrix.....: SO

Date Sampled...: 01/14/11 10:20 Date Received..: 01/19/11
Prep Date....: 01/20/11 Analysis Date..: 01/20/11

Prep Batch #...: 1021283

Dilution Factor: 0.68

% Moisture....: 18 **Method.....:** SW846 8260B

		REPORTIN	G
PARAMETER	RESULT	LIMIT	UNITS
Acetone	ND		ug/kg
Benzene	ND	4.1	ug/kg
Bromodichloromethane	ND	4.1	ug/kg
Bromoform	ND	4.1	ug/kg
Bromomethane	ND	4.1	ug/kg
2-Butanone	ND	17	ug/kg
Carbon disulfide	ND	4.1	ug/kg
Carbon tetrachloride	ND	4.1	ug/kg
Chlorobenzene	ND	4.1	ug/kg
Chloroethane	ND	4.1	ug/kg
Chloroform	ND	4.1	ug/kg
Chloromethane	ND	4.1	ug/kg
Dibromochloromethane	ND	4.1	ug/kg
1,2-Dibromo-3-chloro-	ND	8.3	ug/kg
propane			
1,2-Dibromoethane	ND	4.1	ug/kg
1,2-Dichlorobenzene	ND	4.1	ug/kg
1,3-Dichlorobenzene	ND	4.1	ug/kg
1,4-Dichlorobenzene	ND	4.1	ug/kg
Dichlorodifluoromethane	ND	4.1	ug/kg
1,1-Dichloroethane	ND	4.1	ug/kg
1,2-Dichloroethane	ND	4.1	ug/kg
1,1-Dichloroethene	ND	4.1	ug/kg
cis-1,2-Dichloroethene	ND	4.1	ug/kg
trans-1,2-Dichloroethene	ND	4.1	ug/kg
1,2-Dichloropropane	ND	4.1	ug/kg
cis-1,3-Dichloropropene	ND	4.1	ug/kg
trans-1,3-Dichloropropene	ND	4.1	ug/kg
Ethylbenzene	ND	4.1	ug/kg
2-Hexanone	ND	17	ug/kg
Isopropylbenzene	ND	4.1	ug/kg
Methylene chloride	ND	4.1	ug/kg
4-Methyl-2-pentanone	ND	17	ug/kg
Methyl tert-butyl ether	ND	17	ug/kg
Styrene	ND	4.1	ug/kg
1,1,2,2-Tetrachloroethane	ND	4.1	ug/kg
Tetrachloroethene	ND	4.1	ug/kg
Toluene	ND	4.1	ug/kg
			=

Client Sample ID: HB-02(4-6')-011411

GC/MS Volatiles

Lot-Sample #: A1A190466-001 Work Order #: MDGK31AC Matrix	MDLE #: ALAL9U466-UUL	Work Order	# : MDGK31AC	Matrix	SO
---	------------------------------	------------	--------------	--------	----

PARAMETER 1,2,4-Trichloro- benzene 1,1,1-Trichloroethane	RESULT ND	REPORTING LIMIT 4.1	UNITS ug/kg
benzene 1,1,1-Trichloroethane		4.1	na/ka
1,1,1-Trichloroethane			~~, .~~
4 4 6 - 1 1 2	ND	4.1	ug/kg
1,1,2-Trichloroethane	ND	4.1	ug/kg
Trichloroethene	ND	4.1	ug/kg
Trichlorofluoromethane	ND	4.1	ug/kg
Vinyl chloride	ND	4.1	ug/kg
Xylenes (total)	ND	8.3	ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Dibromofluoromethane	89	(68 - 110	<u> </u>
1,2-Dichloroethane-d4	91	(64 - 110)
Toluene-d8	94	(69 - 128)
4-Bromofluorobenzene	88	(64 - 130)

Results and reporting limits have been adjusted for dry weight.

Client Sample ID: HB-02(4-6')-011411

General Chemistry

Lot-Sample #...: A1A190466-001 Work Order #...: MDGK3 Matrix...... S0

Date Sampled...: 01/14/11 10:20 Date Received..: 01/19/11

% Moisture....: 18

 PARAMETER
 RESULT
 RL
 UNITS
 METHOD
 ANALYSIS DATE
 BATCH #

 Percent Solids
 81.9
 10.0
 %
 MCAWW 160.3 MOD
 01/20-01/21/11
 1020055

Dilution Factor: 1

Client Sample ID: HB-03(6-8')-011411

GC/MS Volatiles

Lot-Sample #...: A1A190466-002 Work Order #...: MDGLF1AC Matrix...... SO

Date Sampled...: 01/14/11 09:50 Date Received..: 01/19/11 Prep Date....: 01/20/11 Analysis Date..: 01/20/11

Prep Batch #...: 1021283
Dilution Factor: 0.81

% Moisture....: 18 **Method.....:** SW846 8260B

		REPORTIN	G
PARAMETER	RESULT	LIMIT	UNITS
Acetone	ND	20	ug/kg
Benzene	ND	5.0	ug/kg
Bromodichloromethane	ND	5.0	ug/kg
Bromoform	ND	5.0	ug/kg
Bromomethane	ND	5.0	ug/kg
2-Butanone	ND	20	ug/kg
Carbon disulfide	ND	5.0	ug/kg
Carbon tetrachloride	ND	5.0	ug/kg
Chlorobenzene	ND	5.0	ug/kg
Chloroethane	ND	5.0	ug/kg
Chloroform	ND	5.0	ug/kg
Chloromethane	ND	5.0	ug/kg
Dibromochloromethane	ND	5.0	ug/kg
1,2-Dibromo-3-chloro-	ND	9.9	ug/kg
propane			
1,2-Dibromoethane	ND	5.0	ug/kg
1,2-Dichlorobenzene	ND	5.0	ug/kg
1,3-Dichlorobenzene	ND	5.0	ug/kg
1,4-Dichlorobenzene	ND	5.0	ug/kg
Dichlorodifluoromethane	ND	5.0	ug/kg
1,1-Dichloroethane	ND	5.0	ug/kg
1,2-Dichloroethane	ND	5.0	ug/kg
1,1-Dichloroethene	ND	5.0	ug/kg
cis-1,2-Dichloroethene	40	5.0	ug/kg
trans-1,2-Dichloroethene	ND	5.0	ug/kg
1,2-Dichloropropane	ND	5.0	ug/kg
cis-1,3-Dichloropropene	ND	5.0	ug/kg
trans-1,3-Dichloropropene	ND	5.0	ug/kg
Ethylbenzene	ND	5.0	ug/kg
2-Hexanone	ND	20	ug/kg
Isopropylbenzene	ND	5.0	ug/kg
Methylene chloride	ND	5.0	ug/kg
4-Methyl-2-pentanone	ND	20	ug/kg
Methyl tert-butyl ether	ND	20	ug/kg
Styrene	ND	5.0	ug/kg
1,1,2,2-Tetrachloroethane	ND	5.0	ug/kg
Tetrachloroethene	ND	5.0	ug/kg
Toluene	ND	5.0	ug/kg

Client Sample ID: HB-03(6-8')-011411

GC/MS Volatiles

Lot-Sample #: AlA190466-002 Work Order #: MDGLF1AC	Matrix SO
--	-----------

		REPORTING	G
PARAMETER	RESULT	LIMIT	UNITS
1,2,4-Trichloro-	ND	5.0	ug/kg
benzene			
1,1,1-Trichloroethane	ND	5.0	ug/kg
1,1,2-Trichloroethane	ND	5.0	ug/kg
Trichloroethene	ND	5.0	ug/kg
Trichlorofluoromethane	ND	5.0	ug/kg
Vinyl chloride	7.7	5 .0	ug/kg
Xylenes (total)	ND	9.9	ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Dibromofluoromethane	90	(68 - 110	0)
1,2-Dichloroethane-d4	88	(64 - 110	0)
Toluene-d8	96	(69 - 128	3)
4-Bromofluorobenzene	87	(64 - 130	2.1

Results and reporting limits have been adjusted for dry weight.

Client Sample ID: HB-03(6-8')-011411

General Chemistry

Lot-Sample #...: A1A190466-002 Work Order #...: MDGLF Matrix...... S0

Date Sampled...: 01/14/11 09:50 Date Received..: 01/19/11

% Moisture....: 18

 PARAMETER
 RESULT
 RL
 UNITS
 METHOD
 ANALYSIS
 DATE
 BATCH #

 Percent Solids
 81.6
 10.0
 %
 MCAWW
 160.3
 MOD
 01/20-01/21/11
 1020055

Dilution Factor: 1

Client Sample ID: HB-06(6-8')-011311

GC/MS Volatiles

Lot-Sample #...: A1A190466-003 Work Order #...: MDGLG1AC Matrix...... SO

Date Sampled...: 01/13/11 14:15 Date Received..: 01/19/11 Prep Date.....: 01/20/11 Analysis Date..: 01/20/11

Prep Batch #...: 1021283
Dilution Factor: 0.73

% Moisture....: 15 **Method.....:** SW846 8260B

		REPORTING	G
PARAMETER	RESULT	LIMIT	UNITS
Acetone	20	<u></u>	ug/kg
Benzene	ND	4.3	ug/kg
Bromodich1oromethane	ND	4.3	ug/kg
Bromoform	ND	4.3	ug/kg
Bromomethane	ND	4.3	ug/kg
2-Butanone	ND	17	ug/kg
Carbon disulfide	ND	4.3	ug/kg
Carbon tetrachloride	ND	4.3	ug/kg
Chlorobenzene	ND	4.3	ug/kg
Chloroethane	ND	4.3	ug/kg
Chloroform	ND	4.3	ug/kg
Chloromethane	ND	4.3	ug/kg
Dibromochloromethane	ND	4.3	ug/kg
1,2-Dibromo-3-chloro-	ND	8.6	ug/kg
propane			
1,2-Dibromoethane	ND	4.3	ug/kg
1,2-Dichlorobenzene	ND	4.3	ug/kg
1,3-Dichlorobenzene	ND	4.3	ug/kg
1,4-Dichlorobenzene	ND	4.3	ug/kg
Dichlorodifluoromethane	ND	4.3	ug/kg
1,1-Dichloroethane	ND	4.3	ug/kg
1,2-Dichloroethane	ND	4.3	ug/kg
1,1-Dichloroethene	ND	4.3	ug/kg
cis-1,2-Dichloroethene	ND	4.3	ug/kg
trans-1,2-Dichloroethene	ND	4.3	ug/kg
1,2-Dichloropropane	ND	4.3	ug/kg
cis-1,3-Dichloropropene	ND	4.3	ug/kg
trans-1,3-Dichloropropene	ND	4.3	ug/kg
Ethylbenzene	ND	4.3	ug/kg
2-Hexanone	ND	17	ug/kg
Isopropylbenzene	ND	4.3	ug/kg
Methylene chloride	ND	4.3	ug/kg
4-Methyl-2-pentanone	ND	17	ug/kg
Methyl tert-butyl ether	ND	17	ug/kg
Styrene	ND	4.3	ug/kg
1,1,2,2-Tetrachloroethane	ND	4.3	ug/kg
Tetrachloroethene	ND	4.3	ug/kg
Toluene	ND	4.3	ug/kg

Client Sample ID: HB-06(6-8')-011311

GC/MS Volatiles

Lot-Sample #: A1A190466-003	Work Order #:	MDGLG1AC	Matrix: SO
		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
1,2,4-Trichloro-	ND	4.3	ug/kg
benzene			
1,1,1-Trichloroethane	ND	4.3	ug/kg
1,1,2-Trichloroethane	ND	4.3	ug/kg
Trichloroethene	ND	4.3	ug/kg
Trichlorofluoromethane	ND	4.3	ug/kg
Vinyl chloride	ND	4.3	ug/kg
Xylenes (total)	ND	8.6	ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Dibromofluoromethane	92	(68 - 110)	
1,2-Dichloroethane-d4	90	(64 - 110)	
Toluene-d8	93	(69 - 128)	
4-Bromofluorobenzene	87	(64 - 130)	

Results and reporting limits have been adjusted for dry weight.

NOTE(S):

Client Sample ID: HB-06(6-8')-011311

General Chemistry

Lot-Sample #...: A1A190466-003 Work Order #...: MDGLG Matrix.....: SO

Date Sampled...: 01/13/11 14:15 Date Received..: 01/19/11

% Moisture....: 15

 PARAMETER
 RESULT
 RL
 UNITS
 METHOD
 ANALYSIS
 DATE
 BATCH #

 Percent Solids
 85.3
 10.0
 %
 MCAWW 160.3 MOD
 01/20-01/21/11
 1020055

Dilution Factor: 1

Client Sample ID: HB-07(6-8')-011311

GC/MS Volatiles

Lot-Sample #...: A1A190466-004 Work Order #...: MDGLH1AC Matrix.....: SO

Date Sampled...: 01/13/11 13:49 Date Received..: 01/19/11 Prep Date....: 01/21/11 Analysis Date..: 01/21/11

Prep Batch #...: 1021283

Dilution Factor: 0.91

% Moisture....: 18 **Method.....:** SW846 8260B

		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Acetone	ND	22	ug/kg
Benzene	ND	5.6	ug/kg
Bromodichloromethane	ND	5.6	ug/kg
Bromoform	ND	5.6	ug/kg
Bromomethane	ND	5.6	ug/kg
2-Butanone	ND	22	ug/kg
Carbon disulfide	ND	5.6	ug/kg
Carbon tetrachloride	ND	5.6	ug/kg
Chlorobenzene	ND	5.6	ug/kg
Chloroethane	ND	5.6	ug/kg
Chloroform	ND	5.6	ug/kg
Chloromethane	ND	5.6	ug/kg
Dibromochloromethane	ND	5.6	ug/kg
1,2-Dibromo-3-chloro-	ND	11	ug/kg
propane			
1,2-Dibromoethane	ND	5.6	ug/kg
1,2-Dichlorobenzene	ND	5.6	ug/kg
1,3-Dichlorobenzene	ND	5.6	ug/kg
1,4-Dichlorobenzene	ND	5.6	ug/kg
Dichlorodifluoromethane	ND	5.6	ug/kg
1,1-Dichloroethane	ND	5.6	ug/kg
1,2-Dichloroethane	ND	5.6	ug/kg
1,1-Dichloroethene	ND	5.6	ug/kg
cis-1,2-Dichloroethene	ND	5.6	ug/kg
trans-1,2-Dichloroethene	ND	5.6	ug/kg
1,2-Dichloropropane	ND	5.6	ug/kg
cis-1,3-Dichloropropene	ND	5.6	ug/kg
trans-1,3-Dichloropropene	ND	5.6	ug/kg
Ethylbenzene	ND	5.6	ug/kg
2-Hexanone	ND	22	ug/kg
Isopropylbenzene	ND	5.6	ug/kg
Methylene chloride	ND	5.6	ug/kg
4-Methyl-2-pentanone	ND	22	ug/kg
Methyl tert-butyl ether	ND	22	ug/kg
Styrene	ND	5.6	ug/kg
1,1,2,2-Tetrachloroethane	ND	5.6	ug/kg
Tetrachloroethene	5.8	5.6	ug/kg
Toluene	ND	5.6	ug/kg

Client Sample ID: HB-07(6-8')-011311

GC/MS Volatiles

Lot-Sample #:	A1A190466-004	Work Order #.	: MDGLH1AC	Matrix SO
---------------	---------------	---------------	------------	-----------

		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
1,2,4-Trichloro-	ND	5.6	ug/kg
benzene			
1,1,1-Trichloroethane	ND	5.6	ug/kg
1,1,2-Trichloroethane	ND	5.6	ug/kg
Trichloroethene	ND	5.6	ug/kg
Trichlorofluoromethane	ND	5.6	ug/kg
Vinyl chloride	ND	5.6	ug/kg
Xylenes (total)	ND	11	ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Dibromofluoromethane	87	(68 - 110)	
1,2-Dichloroethane-d4	84	(64 - 110)	
Toluene-d8	95	(69 - 128)	
4-Bromofluorobenzene	79	(64 - 130)	

Results and reporting limits have been adjusted for dry weight.

Client Sample ID: HB-07(6-8')-011311

General Chemistry

Lot-Sample #...: A1A190466-004 Work Order #...: MDGLH Matrix.....: SO

Date Sampled...: 01/13/11 13:49 Date Received..: 01/19/11

% Moisture....: 18

 PARAMETER
 RESULT
 RL
 UNITS
 METHOD
 ANALYSIS DATE
 BATCH #

 Percent Solids
 81.7
 10.0
 %
 MCAWW 160.3 MOD
 01/20-01/21/11
 1020055

Dilution Factor: 1

Client Sample ID: HB-08(6-8')-011311

GC/MS Volatiles

Lot-Sample #...: A1A190466-005 Work Order #...: MDGLL1AC Matrix......: SO

Date Sampled...: 01/13/11 13:35 Date Received..: 01/19/11
Prep Date....: 01/19/11 Analysis Date..: 01/21/11

Prep Batch #...: 1024167
Dilution Factor: 9.9

% Moisture....: 17 **Method.....:** SW846 8260B

		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Acetone	ND	12000	ug/kg
Benzene	ND	3000	ug/kg
Bromodichloromethane	ND	3000	ug/kg
Bromoform	ND	3000	ug/kg
Bromomethane	ND	3000	ug/kg
2-Butanone	ND	12000	ug/kg
Carbon disulfide	ND	3000	ug/kg
Carbon tetrachloride	ND	3000	ug/kg
Chlorobenzene	ND	3000	ug/kg
Dibromochloromethane	ND	3000	ug/kg
1,2-Dibromo-3-chloro-	ND	5900	ug/kg
propane			
Chloroethane	ND	3000	ug/kg
Chloroform	ND	3000	ug/kg
Chloromethane	ND	3000	ug/kg
1,2-Dibromoethane	ND	3000	ug/kg
1,2-Dichlorobenzene	ND	3000	ug/kg
1,3-Dichlorobenzene	ND	3000	ug/kg
1,4-Dichlorobenzene	ND	3000	ug/kg
Dichlorodifluoromethane	ND	3000	ug/kg
1,1-Dichloroethane	ND	3000	ug/kg
1,2-Dichloroethane	ND	3000	ug/kg
1,1-Dichloroethene	ND	3000	ug/kg
cis-1,2-Dichloroethene	15000	3000	ug/kg
trans-1,2-Dichloroethene	ND	3000	ug/kg
1,2-Dichloropropane	ND	3000	ug/kg
cis-1,3-Dichloropropene	ND	3000	ug/kg
trans-1,3-Dichloropropene	ND	3000	ug/kg
Ethylbenzene	ND	3000	ug/kg
Trichlorofluoromethane	ND	3000	ug/kg
2-Hexanone	ND	12000	ug/kg
Isopropylbenzene	ND	3000	ug/kg
Methylene chloride	ND	3000	ug/kg
4-Methyl-2-pentanone	ND	12000	ug/kg
Styrene	ND	3000	ug/kg
1,1,2,2-Tetrachloroethane	ND	3000	ug/kg
Tetrachloroethene	97000	3000	ug/kg
Toluene	ND	3000	ug/kg

Client Sample ID: HB-08(6-8')-011311

GC/MS Volatiles

Lot-Sample #: A1A190466-005	Work Order #: MDGLL1AC	Matrix SO
-----------------------------	------------------------	-----------

		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
1,2,4-Trichloro-	ND	3000	ug/kg
benzene			
1,1,1-Trichloroethane	ND	3000	ug/kg
1,1,2-Trichloroethane	ND	3000	ug/kg
Trichloroethene	13000	3000	ug/kg
Vinyl chloride	ND	3000	ug/kg
Xylenes (total)	ND	5900	ug/kg
Methyl tert-butyl ether	ND	12000	ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	_
Dibromofluoromethane	72 DIL	(30 - 122)	_
1,2-Dichloroethane-d4	81 DIL	(39 - 128)	(
Toluene-d8	69 DIL	(33 - 134)	
4-Bromofluorobenzene	73 DIL	(26 - 141)	

Results and reporting limits have been adjusted for dry weight.

DIL The concentration is estimated or not reported due to dilution or the presence of interfering analytes.

Client Sample ID: HB-08(6-8')-011311

General Chemistry

Lot-Sample #...: A1A190466-005 Work Order #...: MDGLL Matrix...... SO

Date Sampled...: 01/13/11 13:35 Date Received..: 01/19/11

% Moisture....: 17

 PARAMETER
 RESULT
 RL
 UNITS
 METHOD
 ANALYSIS DATE
 BATCH #

 Percent Solids
 83.2
 10.0
 %
 MCAWW 160.3 MOD
 01/20-01/21/11
 1020055

Dilution Factor: 1

Client Sample ID: HB-09(6-8')-011311

GC/MS Volatiles

Lot-Sample #...: A1A190466-006 Work Order #...: MDGLM1AC Matrix.....: SO

Date Sampled...: 01/13/11 11:10 Date Received..: 01/19/11 Prep Date....: 01/19/11 Analysis Date..: 01/21/11

Prep Batch #...: 1024167
Dilution Factor: 0.75

% Moisture....: 15 **Method.....:** SW846 8260B

		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Acetone	ND —	880	ug/kg
Benzene	ND	220	ug/kg
Bromodichloromethane	ND	220	ug/kg
Bromoform	ND	220	ug/kg
Bromomethane	ND	220	ug/kg
2-Butanone	ND	880	ug/kg
Carbon disulfide	ND	220	ug/kg
Carbon tetrachloride	ND	220	ug/kg
Chlorobenzene	ND	220	ug/kg
Dibromochloromethane	ND	220	ug/kg
1,2-Dibromo-3-chloro-	ND	440	ug/kg
propane			
Chloroethane	ND	220	ug/kg
Chloroform	ND	220	ug/kg
Chloromethane	ND	220	ug/kg
1,2-Dibromoethane	ND	220	ug/kg
1,2-Dichlorobenzene	ND	220	ug/kg
1,3-Dichlorobenzene	ND	220	ug/kg
1,4-Dichlorobenzene	ND	220	ug/kg
Dichlorodifluoromethane	ND	220	ug/kg
1,1-Dichloroethane	ND	220	ug/kg
1,2-Dichloroethane	ND	220	ug/kg
1,1-Dichloroethene	ND	220	ug/kg
cis-1,2-Dichloroethene	5100	220	ug/kg
trans-1,2-Dichloroethene	ND	220	ug/kg
1,2-Dichloropropane	ND	220	ug/kg
cis-1,3-Dichloropropene	ND	220	ug/kg
trans-1,3-Dichloropropene	ND	220	ug/kg
Ethylbenzene	ND	220	ug/kg
Trichlorofluoromethane	ND	220	ug/kg
2-Hexanone	ND	880	ug/ k g
Isopropylbenzene	ND	220	ug/kg
Methylene chloride	ND	220	ug/ k g
4-Methyl-2-pentanone	ND	880	ug/kg
Styrene	ND	220	ug/kg
1,1,2,2-Tetrachloroethane	ND	220	ug/kg
Tetrachloroethene	ND	220	ug/kg
Toluene	ND	220	ug/kg

Client Sample ID: HB-09(6-8')-011311

GC/MS Volatiles

Lot-Sample #: A1A190466-006	Work Order #:	MDGLM1AC	Matrix SO
		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
1,2,4-Trichloro-	ND	220	ug/kg
benzene			
1,1,1-Trichloroethane	ND	220	ug/kg
1,1,2-Trichloroethane	ND	220	ug/kg
Trichloroethene	ND	220	ug/kg
Vinyl chloride	ND	220	ug/kg
Xylenes (total)	ND	440	ug/kg
Methyl tert-butyl ether	ND	880	ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Dibromofluoromethane	72	(30 - 122)	
1,2-Dichloroethane-d4	71	(39 - 128)	
Toluene-d8	75	(33 - 134)	
4-Bromofluorobenzene	68	(26 - 141)	
NOTE(S):			

Results and reporting limits have been adjusted for dry weight.

Client Sample ID: HB-09(6-8')-011311

General Chemistry

Lot-Sample #...: A1A190466-006 Work Order #...: MDGLM Matrix...... SO

Date Sampled...: 01/13/11 11:10 Date Received..: 01/19/11

% Moisture....: 15

 PARAMETER
 RESULT
 RL
 UNITS
 METHOD
 ANALYSIS
 DATE
 BATCH #

 Percent Solids
 85.2
 10.0
 %
 MCAWW 160.3 MOD
 01/20-01/21/11
 1020055

Dilution Factor: 1

Client Sample ID: HB-10(8-10')-011311

GC/MS Volatiles

Lot-Sample #...: A1A190466-007 Work Order #...: MDGLN1AC Matrix...... SO

Date Sampled...: 01/13/11 11:38 Date Received..: 01/19/11
Prep Date....: 01/19/11 Analysis Date..: 01/21/11

Prep Batch #...: 1024167
Dilution Factor: 0.79

Method.....: SW846 8260B

		REPORTIN	IG
PARAMETER	RESULT	LIMIT	UNITS
Acetone	ND ND	920	ug/kg
Benzene	ND	230	ug/kg
Bromodichloromethane	ND	230	ug/kg
Bromoform	ND	230	ug/kg
Bromomethane	ND	230	ug/kg
2-Butanone	ND	920	ug/kg
Carbon disulfide	ND	230	ug/kg
Carbon tetrachloride	ND	230	ug/kg
Chlorobenzene	ND	230	ug/kg
Dibromochloromethane	ND	230	ug/kg
1,2-Dibromo-3-chloro-	ND	460	ug/kg
propane			
Chloroethane	ND	230	ug/kg
Chloroform	ND	230	ug/kg
Chloromethane	ND	230	ug/kg
1,2-Dibromoethane	ND	230	ug/kg
1,2-Dichlorobenzene	ND	230	ug/kg
1,3-Dichlorobenzene	ND	230	ug/kg
1,4-Dichlorobenzene	ND	230	ug/kg
Dichlorodifluoromethane	ND	230	ug/kg
1,1-Dichloroethane	ŅD	230	ug/kg
1,2-Dichloroethane	ND	230	ug/kg
1,1-Dichloroethene	ND	230	ug/kg
cis-1,2-Dichloroethene	740	230	ug/kg
trans-1,2-Dichloroethene	ND	230	ug/kg
1,2-Dichloropropane	ND	230	ug/kg
cis-1,3-Dichloropropene	ND	230	ug/kg
trans-1,3-Dichloropropene	ND	230	ug/kg
Ethylbenzene	ND	230	ug/kg
Trichlorofluoromethane	ND	230	ug/kg
2-Hexanone	ND	920	ug/kg
Isopropylbenzene	ND	230	ug/kg
Methylene chloride	ND	230	ug/kg
4-Methyl-2-pentanone	ND	920	ug/kg
Styrene	ND	230	ug/kg
1,1,2,2-Tetrachloroethane	ND	230	ug/kg
Tetrachloroethene	ND	230	ug/kg
Toluene	ND	230	ug/kg

Client Sample ID: HB-10(8-10')-011311

GC/MS Volatiles

Lot-Sample #: A1A190466-007	Work Order #:	MDGLN1AC	Matrix SO
		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
1,2,4-Trichloro-	ND	230	ug/kg
benzene			
1,1,1-Trichloroethane	ND	230	ug/kg
1,1,2-Trichloroethane	ND	230	ug/kg
Trichloroethene	1600	230	ug/kg
Vinyl chloride	ND	230	ug/kg
Xylenes (total)	ND	460	ug/kg
Methyl tert-butyl ether	ND	920	ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Dibromofluoromethane	73	(30 - 122)	
1,2-Dichloroethane-d4	75	(39 - 128)	
Toluene-d8	76	(33 - 134)	
4-Bromofluorobenzene	69	(26 - 141)	

Results and reporting limits have been adjusted for dry weight.

Client Sample ID: HB-10(8-10')-011311

General Chemistry

Lot-Sample #...: A1A190466-007

Work Order #...: MDGLN

Matrix..... SO

Date Sampled...: 01/13/11 11:38 Date Received..: 01/19/11

% Moisture....: 14

PREPARATION-PREP RESULT RL UNITS 85.6 10.0 ANALYSIS DATE BATCH # PARAMETER METHOD MCAWW 160.3 MOD 01/20-01/21/11 1020055 Percent Solids

Dilution Factor: 1

Client Sample ID: HB-11(8-10')-011311

GC/MS Volatiles

Lot-Sample #...: A1A190466-008 Work Order #...: MDGLQ1AC Matrix.....: SO

Date Sampled...: 01/13/11 11:55 Date Received..: 01/19/11
Prep Date....: 01/19/11 Analysis Date..: 01/24/11

Prep Batch #...: 1024167 Dilution Factor: 7.02

% Moisture....: 15 **Method.....**: SW846 8260B

REPORTING
PARAMETER RESULT LIMIT UNITS
Acetone ND 8200 ug/kg
Benzene ND 2100 ug/kg
Bromodichloromethane ND 2100 ug/kg
Bromoform ND 2100 ug/kg
Bromomethane ND 2100 ug/kg
2-Butanone ND 8200 ug/kg
Carbon disulfide ND 2100 ug/kg
Carbon tetrachloride ND 2100 ug/kg
Chlorobenzene ND 2100 ug/kg
Dibromochloromethane ND 2100 ug/kg
1,2-Dibromo-3-chloro- ND 4100 ug/kg
propane
Chloroethane ND 2100 ug/kg
Chloroform ND 2100 ug/kg
Chloromethane ND 2100 ug/kg
1,2-Dibromoethane ND 2100 ug/kg
1,2-Dichlorobenzene ND 2100 ug/kg
1,3-Dichlorobenzene ND 2100 ug/kg
1,4-Dichlorobenzene ND 2100 ug/kg
Dichlorodifluoromethane ND 2100 ug/kg
1,1-Dichloroethane ND 2100 ug/kg
1,2-Dichloroethane ND 2100 ug/kg
1,1-Dichloroethene ND 2100 ug/kg
cis-1,2-Dichloroethene ND 2100 ug/kg
trans-1,2-Dichloroethene ND 2100 ug/kg
1,2-Dichloropropane ND 2100 ug/kg
cis-1,3-Dichloropropene ND 2100 ug/kg
trans-1,3-Dichloropropene ND 2100 ug/kg
Ethylbenzene ND 2100 ug/kg
Trichlorofluoromethane ND 2100 ug/kg
2-Hexanone ND 8200 ug/kg
Isopropylbenzene ND 2100 ug/kg
Methylene chloride ND 2100 ug/kg
4-Methyl-2-pentanone ND 8200 ug/kg
Styrene ND 2100 ug/kg
1,1,2,2-Tetrachloroethane ND 2100 ug/kg
Tetrachloroethene 67000 2100 ug/kg
Toluene ND 2100 ug/kg

Client Sample ID: HB-11(8-10')-011311

GC/MS Volatiles

Lot-Sample #: A1A190466-008	Work Order	#: MDGLQ1AC	Matrix SO

PARAMETER 1,2,4-Trichloro-	RESULT	LIMIT	IINITMO
1 2 4-Trichloro-		T1 T T T T T	UNITS
1,2,4-111010	ND ND	2100	ug/kg
benzene			
1,1,1-Trichloroethane	ND	2100	ug/kg
1,1,2-Trichloroethane	ND	2100	ug/kg
Trichloroethene	2400	2100	ug/kg
Vinyl chloride	ND	2100	ug/kg
Xylenes (total)	ND	4100	ug/kg
Methyl tert-butyl ether	ND	8200	ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Dibromofluoromethane	79 DIL	(30 - 122)	
1,2-Dichloroethane-d4	85 DIL	(39 - 128)	
Toluene-d8	71 DIL	(33 - 134)	
4-Bromofluorobenzene	67 DIL	(26 - 141)	

Results and reporting limits have been adjusted for dry weight.

DIL The concentration is estimated or not reported due to dilution or the presence of interfering analytes.

Client Sample ID: HB-11(8-10')-011311

General Chemistry

Lot-Sample #...: A1A190466-008 Work Order #...: MDGLQ Matrix.....: SO

Date Sampled...: 01/13/11 11:55 Date Received..: 01/19/11

% Moisture....: 15

 PARAMETER
 RESULT
 RL
 UNITS
 METHOD
 ANALYSIS
 DATE
 BATCH #

 Percent Solids
 85.3
 10.0
 %
 MCAWW 160.3 MOD
 01/20-01/21/11
 1020055

Dilution Factor: 1

Client Sample ID: HB-12(0-2')-011311

GC/MS Volatiles

Lot-Sample #...: A1A190466-009 Work Order #...: MDGLR1AC Matrix......: SO

Date Sampled...: 01/13/11 13:10 Date Received..: 01/19/11
Prep Date....: 01/19/11 Analysis Date..: 01/21/11

Prep Batch #...: 1024167
Dilution Factor: 1.42

% Moisture....: 12 **Method.....:** SW846 8260B

		REPORTIN	G
PARAMETER	RESULT	LIMIT	UNITS
Acetone	ND	1600	ug/kg
Benzene	ND	400	ug/kg
Bromodichloromethane	ND	400	ug/kg
Bromoform	ND	400	ug/kg
Bromomethane	ND	400	ug/kg
2-Butanone	ND	1600	ug/kg
Carbon disulfide	ND	400	ug/kg
Carbon tetrachloride	ND	400	ug/kg
Chlorobenzene	ND	400	ug/kg
Dibromochloromethane	ND	400	ug/kg
1,2-Dibromo-3-chloro-	ND	810	ug/kg
propane			
Chloroethane	ND	400	ug/kg
Chloroform	ND	400	ug/kg
Chloromethane	ND	400	ug/kg
1,2-Dibromoethane	ND	400	ug/kg
1,2-Dichlorobenzene	ND	400	ug/kg
1,3-Dichlorobenzene	ND	400	ug/kg
1,4-Dichlorobenzene	ND	400	ug/kg
Dichlorodifluoromethane	ND	400	ug/kg
1,1-Dichloroethane	ND	400	ug/kg
1,2-Dichloroethane	ND	400	ug/kg
1,1-Dichloroethene	ND	400	ug/kg
cis-1,2-Dichloroethene	840	400	ug/kg
trans-1,2-Dichloroethene	ND	400	ug/kg
1,2-Dichloropropane	ND	400	ug/kg
cis-1,3-Dichloropropene	ND	400	ug/kg
trans-1,3-Dichloropropene	ND	400	ug/kg
Ethylbenzene	ND	400	ug/kg
Trichlorofluoromethane	ND	400	ug/kg
2-Hexanone	ND	1600	ug/kg
Isopropylbenzene	ND	400	ug/kg
Methylene chloride	ND	400	ug/kg
4-Methyl-2-pentanone	ND	1600	ug/kg
Styrene	ND	400	ug/kg
1,1,2,2-Tetrachloroethane	ND	400	ug/kg
Tetrachloroethene	1600	400	ug/kg
Toluene	ND	400	ug/kg

Client Sample ID: HB-12(0-2')-011311

GC/MS Volatiles

Lot-Sample #: A1A190466-009	Work Order #:	MDGLR1AC	Matrix SO
		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
1,2,4-Trichloro-	ND	400	ug/kg
benzene			
1,1,1-Trichloroethane	ND	400	ug/kg
1,1,2-Trichloroethane	ND	400	ug/kg
Trichloroethene	ND	400	ug/kg
Vinyl chloride	ND	400	ug/kg
Xylenes (total)	ND	810	ug/kg
Methyl tert-butyl ether	ND	1600	ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Dibromofluoromethane	79	(30 - 122)	
1,2-Dichloroethane-d4	84	(39 - 128)	
Toluene-d8	83	(33 - 134)	
4-Bromofluorobenzene	78	(26 - 141)	
NOTE(S):			

Results and reporting limits have been adjusted for dry weight.

Client Sample ID: HB-12(0-2')-011311

General Chemistry

Lot-Sample #...: A1A190466-009 Work Order #...: MDGLR Matrix.....: SO

Date Sampled...: 01/13/11 13:10 Date Received..: 01/19/11

% Moisture....: 12

 PARAMETER
 RESULT
 RL
 UNITS
 METHOD
 ANALYSIS
 DATE
 BATCH #

 Percent Solids
 87.9
 10.0
 %
 MCAWW 160.3 MOD
 01/20-01/21/11
 1020055

Dilution Factor: 1

Client Sample ID: HB-13(4-6')-011311

GC/MS Volatiles

Lot-Sample #...: A1A190466-010 Work Order #...: MDGLT1AC Matrix.....: SO

Date Sampled...: 01/13/11 12:05 Date Received..: 01/19/11 Prep Date.....: 01/21/11 Analysis Date..: 01/21/11

Prep Batch #...: 1021283
Dilution Factor: 0.81

		REPORTIN	IG
PARAMETER	RESULT	LIMIT	UNITS
Acetone	ND	22	ug/kg
Benzene	ND	5.6	ug/kg
Bromodichloromethane	ND	5.6	ug/kg
Bromoform	ND	5.6	ug/kg
Bromomethane	ND	5.6	ug/kg
2-Butanone	ND	22	ug/kg
Carbon disulfide	8.8	5.6	ug/kg
Carbon tetrachloride	ND	5.6	ug/kg
Chlorobenzene	ND	5.6	ug/kg
Chloroethane	ND	5.6	ug/kg
Chloroform	ND	5.6	ug/kg
Chloromethane	ND	5.6	ug/kg
Dibromochloromethane	ND	5.6	ug/kg
1,2-Dibromo-3-chloro-	ND	11	ug/kg
propane			
1,2-Dibromoethane	ND	5.6	ug/kg
1,2-Dichlorobenzene	ND	5.6	ug/kg
1,3-Dichlorobenzene	ND	5.6	ug/kg
1,4-Dichlorobenzene	ND	5.6	ug/kg
Dichlorodifluoromethane	ND	5.6	ug/kg
1,1-Dichloroethane	ND	5.6	ug/kg
1,2-Dichloroethane	ND	5.6	ug/kg
1,1-Dichloroethene	ND	5.6	ug/kg
cis-1,2-Dichloroethene	53	5.6	ug/kg
trans-1,2-Dichloroethene	ND	5.6	ug/kg
1,2-Dichloropropane	ND	5.6	ug/kg
cis-1,3-Dichloropropene	ND	5.6	ug/kg
trans-1,3-Dichloropropene	ND	5.6	ug/kg
Ethylbenzene	ND	5.6	ug/kg
2-Hexanone	ND	22	ug/kg
Isopropylbenzene	ND	5.6	ug/kg
Methylene chloride	ND	5.6	ug/kg
4-Methyl-2-pentanone	ND	22	ug/kg
Methyl tert-butyl ether	ND	22	ug/kg
Styrene	ND	5.6	ug/kg
1,1,2,2-Tetrachloroethane	ND	5.6	ug/kg
Tetrachloroethene	ND	5.6	ug/kg
Toluene	11	5.6	ug/kg

Client Sample ID: HB-13(4-6')-011311

GC/MS Volatiles

Lot-Sample #: A1A190466-010	Work Order #:	MDGLT1AC	Matrix: SO
		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
1,2,4-Trichloro-	ND	5.6	ug/kg
benzene			
1,1,1-Trichloroethane	ND	5.6	ug/kg
1,1,2-Trichloroethane	ND	5.6	ug/kg
Trichloroethene	ND	5.6	ug/kg
Trichlorofluoromethane	ND	5.6	ug/kg
Vinyl chloride	ND	5.6	ug/kg
Xylenes (total)	ND	11	ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Dibromofluoromethane	88	(68 - 110)	
1,2-Dichloroethane-d4	84	(64 - 110)	
Toluene-d8	91	(69 - 128)	
4-Bromofluorobenzene	81	(64 - 130)	

Results and reporting limits have been adjusted for dry weight.

Client Sample ID: HB-13(4-6')-011311

General Chemistry

Lot-Sample #...: A1A190466-010 Work Order #...: MDGLT

Matrix..... SO

Date Sampled...: 01/13/11 12:05 Date Received..: 01/19/11

% Moisture....: 27

 PARAMETER
 RESULT
 RL
 UNITS
 METHOD
 ANALYSIS
 DATE
 BATCH #

 Percent Solids
 72.7
 10.0
 %
 MCAWW 160.3 MOD
 01/20-01/21/11
 1020055

Dilution Factor: 1

Client Sample ID: HB-14(8-10')-011311

GC/MS Volatiles

Lot-Sample #...: A1A190466-011 Work Order #...: MDGLW1AC Matrix.....: SO

Date Sampled...: 01/13/11 12:35 Date Received..: 01/19/11
Prep Date....: 01/19/11 Analysis Date..: 01/21/11

Prep Batch #...: 1024167

Dilution Factor: 0.81

% Moisture....: 13 **Method.....:** SW846 8260B

PARAMETER RESULT LIMIT UNITS Acetone ND 940 ug/kg Benzene ND 230 ug/kg Bromodichloromethane ND 230 ug/kg Bromoform ND 230 ug/kg Bromomethane ND 230 ug/kg 2-Butanone ND 940 ug/kg Carbon disulfide ND 230 ug/kg Carbon tetrachloride ND 230 ug/kg Chlorobenzene ND 230 ug/kg Dibromochloromethane ND 230 ug/kg			REPORTING	
Acetone ND 940 ug/kg Benzene ND 230 ug/kg Bromodichloromethane ND 230 ug/kg Bromoform ND 230 ug/kg Bromomethane ND 230 ug/kg 2-Butanone ND 940 ug/kg Carbon disulfide ND 230 ug/kg Carbon tetrachloride ND 230 ug/kg Chlorobenzene ND 230 ug/kg Dibromochloromethane ND 230 ug/kg	PARAMETER	RESULT		UNITS
Benzene ND 230 ug/kg Bromodichloromethane ND 230 ug/kg Bromoform ND 230 ug/kg Bromomethane ND 230 ug/kg 2-Butanone ND 940 ug/kg Carbon disulfide ND 230 ug/kg Carbon tetrachloride ND 230 ug/kg Chlorobenzene ND 230 ug/kg Dibromochloromethane ND 230 ug/kg	Acetone			
Bromodichloromethane ND 230 ug/kg Bromoform ND 230 ug/kg Bromomethane ND 230 ug/kg 2-Butanone ND 940 ug/kg Carbon disulfide ND 230 ug/kg Carbon tetrachloride ND 230 ug/kg Chlorobenzene ND 230 ug/kg Dibromochloromethane ND 230 ug/kg	Benzene	ND	230	
Bromoform ND 230 ug/kg Bromomethane ND 230 ug/kg 2-Butanone ND 940 ug/kg Carbon disulfide ND 230 ug/kg Carbon tetrachloride ND 230 ug/kg Chlorobenzene ND 230 ug/kg Dibromochloromethane ND 230 ug/kg	Bromodichloromethane	ND		
Bromomethane ND 230 ug/kg 2-Butanone ND 940 ug/kg Carbon disulfide ND 230 ug/kg Carbon tetrachloride ND 230 ug/kg Chlorobenzene ND 230 ug/kg Dibromochloromethane ND 230 ug/kg	Bromoform	ND	230	
2-Butanone ND 940 ug/kg Carbon disulfide ND 230 ug/kg Carbon tetrachloride ND 230 ug/kg Chlorobenzene ND 230 ug/kg Dibromochloromethane ND 230 ug/kg	Bromomethane	ND	230	
Carbon disulfide ND 230 ug/kg Carbon tetrachloride ND 230 ug/kg Chlorobenzene ND 230 ug/kg Dibromochloromethane ND 230 ug/kg	2-Butanone	ND	940	
Carbon tetrachloride ND 230 ug/kg Chlorobenzene ND 230 ug/kg Dibromochloromethane ND 230 ug/kg	Carbon disulfide	ND	230	ug/kg
Chlorobenzene ND 230 ug/kg Dibromochloromethane ND 230 ug/kg	Carbon tetrachloride	ND	230	_
3. 3	Chlorobenzene	ND	230	
	Dibromochloromethane	ND	230	ug/kg
1,2-Dibromo-3-chloro- ND 470 ug/kg	1,2-Dibromo-3-chloro-	ND	470	ug/kg
propane	propane			
Chloroethane ND 230 ug/kg	Chloroethane	ND	230	ug/kg
Chloroform ND 230 ug/kg	Chloroform	ND	230	ug/kg
Chloromethane ND 230 ug/kg	Chloromethane	ND	230	ug/kg
1,2-Dibromoethane ND 230 ug/kg	1,2-Dibromoethane	ND	230	
1,2-Dichlorobenzene ND 230 ug/kg	1,2-Dichlorobenzene	ND	230	ug/kg
1,3-Dichlorobenzene ND 230 ug/kg	1,3-Dichlorobenzene	ND	230	ug/kg
1,4-Dichlorobenzene ND 230 ug/kg	1,4-Dichlorobenzene	ND	230	ug/kg
Dichlorodifluoromethane ND 230 ug/kg	Dichlorodifluoromethane	ND	230	ug/kg
1,1-Dichloroethane ND 230 ug/kg	1,1-Dichloroethane	ND	230	ug/kg
1,2-Dichloroethane ND 230 ug/kg	1,2-Dichloroethane	ND	230	
1,1-Dichloroethene ND 230 ug/kg	1,1-Dichloroethene	ND	230	ug/kg
cis-1,2-Dichloroethene 1300 230 ug/kg	cis-1,2-Dichloroethene	1300	230	ug/kg
trans-1,2-Dichloroethene ND 230 ug/kg	trans-1,2-Dichloroethene	ND	230	ug/kg
1,2-Dichloropropane ND 230 ug/kg	1,2-Dichloropropane	ND	230	ug/kg
cis-1,3-Dichloropropene ND 230 ug/kg	cis-1,3-Dichloropropene	ND	230	ug/kg
trans-1,3-Dichloropropene ND 230 ug/kg	trans-1,3-Dichloropropene	ND	230	ug/kg
Ethylbenzene ND 230 ug/kg	Ethylbenzene	ND	230	ug/kg
Trichlorofluoromethane ND 230 ug/kg	Trichlorofluoromethane	ND	230	ug/kg
2-Hexanone ND 940 ug/kg	2-Hexanone	ND	940	ug/kg
Isopropylbenzene ND 230 ug/kg	Isopropylbenzene	ND	230	ug/kg
Methylene chloride ND 230 ug/kg	Methylene chloride	ND	230	ug/kg
4-Methyl-2-pentanone ND 940 ug/kg	4-Methyl-2-pentanone	ND	940	ug/kg
Styrene ND 230 ug/kg		ND	230	ug/kg
1,1,2,2-Tetrachloroethane ND 230 ug/kg	1,1,2,2-Tetrachloroethane	ND	230	ug/kg
Tetrachloroethene ND 230 ug/kg	Tetrachloroethene	ND	230	ug/kg
Toluene ND 230 ug/kg	Toluene	ND	230	ug/kg

Client Sample ID: HB-14(8-10')-011311

GC/MS Volatiles

Lot-Sample #: A1A190466-011	Work Order #: M	<pre>fDGLW1AC Mat:</pre>	rix SC)
-----------------------------	-----------------	--------------------------	--------	---

		REPORTIN	IG
PARAMETER	RESULT	LIMIT	UNITS
1,2,4-Trichloro-	ND	230	ug/kg
benzene			
1,1,1-Trichloroethane	ND	230	ug/kg
1,1,2-Trichloroethane	ND	230	ug/kg
Trichloroethene	ND	230	ug/kg
Vinyl chloride	ND	230	ug/kg
Xylenes (total)	ND	470	ug/kg
Methyl tert-butyl ether	ND	940	ug/kg
	PERCENT	RECOVERY	
SURROGATE_	RECOVERY	LIMITS	
Dibromofluoromethane	74	(30 - 12	2)
1,2-Dichloroethane-d4	76	(39 - 12	8)
Toluene-d8	75	(33 - 13	4)
4-Bromofluorobenzene	73	(26 - 14	1)

Results and reporting limits have been adjusted for dry weight.

Client Sample ID: HB-14(8-10')-011311

General Chemistry

Lot-Sample #...: A1A190466-011 Work Order #...: MDGLW Matrix.....: SO

Date Sampled...: 01/13/11 12:35 Date Received..: 01/19/11

% Moisture....: 13

 PARAMETER
 RESULT
 RL
 UNITS
 METHOD
 ANALYSIS DATE
 BATCH #

 Percent Solids
 86.6
 10.0
 %
 MCAWW 160.3 MOD
 01/20-01/21/11
 1020055

Dilution Factor: 1

Client Sample ID: HB-15(4-6')-011411

GC/MS Volatiles

Lot-Sample #...: A1A190466-012 Work Order #...: MDGLX1AC Matrix......: SO

Date Sampled...: 01/14/11 11:40 Date Received..: 01/19/11 Prep Date.....: 01/21/11 Analysis Date..: 01/21/11

Prep Batch #...: 1021283
Dilution Factor: 0.78

% Moisture....: 22 **Method.....:** SW846 8260B

		REPORTIN	IG
PARAMETER	RESULT	LIMIT	UNITS
Acetone	ND	20	ug/kg
Benzene	ND	5.0	ug/kg
Bromodichloromethane	ND	5.0	ug/kg
Bromoform	ND	5.0	ug/kg
Bromomethane	ND	5.0	ug/kg
2-Butanone	ND	20	ug/kg
Carbon disulfide	12	5.0	ug/kg
Carbon tetrachloride	ND	5.0	ug/kg
Chlorobenzene	ND	5.0	ug/kg
Chloroethane	ND	5.0	ug/kg
Chloroform	ND	5.0	ug/kg
Chloromethane	ND	5.0	ug/kg
Dibromochloromethane	ND	5.0	ug/kg
1,2-Dibromo-3-chloro-	ND	10	ug/kg
propane			
1,2-Dibromoethane	ND	5.0	ug/kg
1,2-Dichlorobenzene	ND	5.0	ug/kg
1,3-Dichlorobenzene	ND	5.0	ug/kg
1,4-Dichlorobenzene	ND	5.0	ug/kg
Dichlorodifluoromethane	ND	5.0	ug/kg
1,1-Dichloroethane	ND	5.0	ug/kg
1,2-Dichloroethane	ND	5.0	ug/kg
1,1-Dichloroethene	ND	5.0	ug/kg
cis-1,2-Dichloroethene	ND	5.0	ug/kg
trans-1,2-Dichloroethene	ND	5.0	ug/kg
1,2-Dichloropropane	ND	5.0	ug/kg
cis-1,3-Dichloropropene	ND	5.0	ug/kg
trans-1,3-Dichloropropene	ND	5.0	ug/kg
Ethylbenzene	ND	5.0	ug/kg
2-Hexanone	ND	20	ug/kg
Isopropylbenzene	ND	5.0	ug/kg
Methylene chloride	ND	5.0	ug/kg
4-Methyl-2-pentanone	ND	20	ug/kg
Methyl tert-butyl ether	ND	20	ug/kg
Styrene	ND	5.0	ug/kg
1,1,2,2-Tetrachloroethane	ND	5.0	ug/kg
Tetrachloroethene	ND	5.0	ug/kg
Toluene	ND	5.0	ug/kg

Client Sample ID: HB-15(4-6')-011411

GC/MS Volatiles

Lot-Sample	# -	A1A190466-012	Work Order	#: MDGLX1AC	Matrix	• 50

		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
1,2,4-Trichloro-	ND	5.0	ug/kg
benzene			
1,1,1-Trichloroethane	ND	5.0	ug/kg
1,1,2-Trichloroethane	ND	5.0	ug/kg
Trichloroethene	ND	5.0	ug/kg
Trichlorofluoromethane	ND	5.0	ug/kg
Vinyl chloride	ND	5.0	ug/kg
Xylenes (total)	ND	10	ug/kg
	DEDCEME	DEGOTERY	
0	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS_	-
Dibromofluoromethane	89	(68 - 110)	
1,2-Dichloroethane-d4	89	(64 - 110)	
Toluene-d8	92	(69 - 128)	
4-Bromofluorobenzene	83	(64 - 130)	
NOTE(S):			

Results and reporting limits have been adjusted for dry weight.

Client Sample ID: HB-15(4-6')-011411

General Chemistry

Lot-Sample #...: A1A190466-012 Work Order #...: MDGLX Matrix.....: SO

Date Sampled...: 01/14/11 11:40 Date Received..: 01/19/11

% Moisture....: 22

 PARAMETER
 RESULT
 RL
 UNITS
 METHOD
 ANALYSIS
 DATE
 BATCH #

 Percent Solids
 78.0
 10.0
 %
 MCAWW 160.3 MOD
 100.3 MOD
 01/20-01/21/11
 1020055

Dilution Factor: 1

Client Sample ID: HB-16(4-6')-011411

GC/MS Volatiles

Lot-Sample #...: A1A190466-013 Work Order #...: MDGL11AC Matrix...... SO

Date Sampled...: 01/14/11 11:24 Date Received..: 01/19/11 Prep Date.....: 01/21/11 Analysis Date..: 01/21/11

Prep Batch #...: 1021283
Dilution Factor: 0.76

		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Acetone	ND		ug/kg
Benzene	ND	4.7	ug/kg
Bromodichloromethane	ND	4.7	ug/kg
Bromoform	ND	4.7	ug/kg
Bromomethane	ND	4.7	ug/kg
2-Butanone	ND	19	ug/kg
Carbon disulfide	ND	4.7	ug/kg
Carbon tetrachloride	ND	4.7	ug/kg
Chlorobenzene	ND	4.7	ug/kg
Chloroethane	ND	4.7	ug/kg
Chloroform	ND	4.7	ug/kg
Chloromethane	ND	4.7	ug/kg
Dibromochloromethane	ND	4.7	ug/kg
1,2-Dibromo-3-chloro-	ND	9.5	ug/kg
propane			
1,2-Dibromoethane	ND	4.7	ug/kg
1,2-Dichlorobenzene	ND	4.7	ug/kg
1,3-Dichlorobenzene	ND	4.7	ug/kg
1,4-Dichlorobenzene	ND	4.7	ug/kg
Dichlorodif1uoromethane	ND	4.7	ug/kg
1,1-Dichloroethane	ND	4.7	ug/kg
1,2-Dichloroethane	ND	4.7	ug/kg
1,1-Dichloroethene	ND	4.7	ug/kg
cis-1,2-Dichloroethene	ND	4.7	ug/kg
trans-1,2-Dichloroethene	ND	4.7	ug/kg
1,2-Dichloropropane	ND	4.7	ug/kg
cis-1,3-Dichloropropene	ND	4.7	ug/ k g
trans-1,3-Dichloropropene	ND	4.7	ug/kg
Eth y lbenzene	ND	4.7	ug/kg
2-Hexanone	ND	19	ug/kg
Isopropylbenzene	ND	4.7	ug/kg
Methylene chloride	ND	4.7	ug/kg
4-Methyl-2-pentanone	ND	19	ug/kg
Methyl tert-butyl ether	ND	19	ug/kg
Styrene	ND	4.7	ug/kg
1,1,2,2-Tetrachloroethane	ND	4.7	ug/kg
Tetrachloroethene	ND	4.7	ug/kg
Toluene	ND	4.7	ug/kg

Client Sample ID: HB-16(4-6')-011411

GC/MS Volatiles

Lot-Sample #: A1A190466-013 Work Order #	: MDGL11AC	Matrix:	SO
--	------------	---------	----

		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
1,2,4-Trichloro-	ND	4.7	ug/kg
benzene			
1,1,1-Trichloroethane	ND	4.7	ug/kg
1,1,2-Trichloroethane	ND	4.7	ug/kg
Trichloroethene	ND	4.7	ug/kg
Trichlorofluoromethane	ND	4.7	ug/kg
Vinyl chloride	ND	4.7	ug/kg
Xylenes (total)	ND	9.5	ug/kg
	PERCENT	RECOVERY	
URROGATE	RECOVERY	LIMITS	
Dibromofluoromethane	93	(68 - 110)
1,2-Dichloroethane-d4	90	(64 - 110)
Toluene-d8	90	(69 - 128)
4-Bromofluorobenzene	84	(64 - 130)

Results and reporting limits have been adjusted for dry weight.

Client Sample ID: HB-16(4-6')-011411

General Chemistry

Lot-Sample #...: A1A190466-013 Work Order #...: MDGL1 Matrix.....: SO

Date Sampled...: 01/14/11 11:24 Date Received..: 01/19/11

% Moisture....: 20

 PARAMETER
 RESULT
 RL
 UNITS
 METHOD
 ANALYSIS DATE
 BATCH #

 Percent Solids
 80.3
 10.0
 %
 MCAWW 160.3 MOD
 01/20-01/21/11
 1020055

Dilution Factor: 1

Client Sample ID: HB-A(6-8')-011311

GC/MS Volatiles

Lot-Sample #...: A1A190466-014 Work Order #...: MDGL31AC Matrix......: SO

Prep Batch #...: 1021283

Dilution Factor: 0.77

Moisture....: 15 **Method.....:** SW846 8260B

		REPORTIN	IG
PARAMETER	RESULT	LIMIT	UNITS
Acetone	ND	18	ug/kg
Benzene	ND	4.5	ug/kg
Bromodichloromethane	ND	4.5	ug/kg
Bromoform	ND	4.5	ug/kg
Bromomethane	ND	4.5	ug/kg
2-Butanone	ND	18	ug/kg
Carbon disulfide	ND	4.5	ug/kg
Carbon tetrachloride	ND	4.5	ug/kg
Chlorobenzene	ND	4.5	ug/kg
Chloroethane	ND	4.5	ug/kg
Chloroform	ND	4.5	ug/kg
Chloromethane	ND	4.5	ug/kg
Dibromochloromethane	ND	4.5	ug/kg
1,2-Dibromo-3-chloro-	ND	9.1	ug/kg
propane			
1,2-Dibromoethane	ND	4.5	ug/kg
1,2-Dichlorobenzene	ND	4.5	ug/kg
1,3-Dichlorobenzene	ND	4.5	ug/kg
1,4-Dichlorobenzene	ND	4.5	ug/kg
Dichlorodifluoromethane	ND	4.5	ug/kg
1,1-Dichloroethane	ND	4.5	ug/kg
1,2-Dichloroethane	ND	4.5	ug/kg
1,1-Dichloroethene	ND	4.5	ug/kg
cis-1,2-Dichloroethene	ND	4.5	ug/kg
trans-1,2-Dichloroethene	ND	4.5	ug/kg
1,2-Dichloropropane	ND	4.5	ug/kg
cis-1,3-Dichloropropene	ND	4.5	ug/kg
trans-1,3-Dichloropropene	ND	4.5	ug/kg
Ethylbenzene	ND	4.5	ug/kg
2-Hexanone	ND	18	ug/kg
Isopropylbenzene	ND	4.5	ug/kg
Methylene chloride	ND	4.5	ug/kg
4-Methyl-2-pentanone	ND	18	ug/kg
Methyl tert-butyl ether	ND	18	ug/kg
Styrene	ND	4.5	ug/kg
1,1,2,2-Tetrachloroethane	ND	4.5	ug/kg
Tetrachloroethene	ND	4.5	ug/kg
Toluene	4.9	4.5	ug/kg

Client Sample ID: HB-A(6-8')-011311

GC/MS Volatiles

Lot-Sample #:	A1A190466-014	Work Order	#: MDGL31AC	Matrix:	SO
---------------	---------------	------------	-------------	---------	----

		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
1,2,4-Trichloro-	ND	4.5	ug/kg
benzene			
1,1,1-Trichloroethane	ND	4.5	ug/kg
1,1,2-Trichloroethane	ND	4.5	ug/kg
Trichloroethene	ND	4.5	ug/kg
Trichlorofluoromethane	ND	4.5	ug/kg
Vinyl chloride	ND	4.5	ug/kg
Xylenes (total)	ND	9.1	ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Dibromofluoromethane	92	(68 - 110)	_
1,2-Dichloroethane-d4	91	(64 - 110))
Toluene-d8	87	(69 - 128)	+
4-Bromofluorobenzene	85	(64 - 130)	
MORE (C)			

NOTE(S):

Results and reporting limits have been adjusted for dry weight.

Client Sample ID: HB-A(6-8')-011311

General Chemistry

Lot-Sample #...: A1A190466-014

Work Order #...: MDGL3

Matrix....: SO

Date Sampled...: 01/13/11

Date Received..: 01/19/11

% Moisture....: 15

PREPARATION- PREP

PARAMETER
Percent Solids

RESULT

84.8

RL UNITS %

METHOD
MCAWW 160.3 MOD

ANALYSIS DATE BATCH # 1020055

Dilution Factor: 1

Client Sample ID: EQUIPMENT BLANK

GC/MS Volatiles

Lot-Sample #...: A1A190466-015 Work Order #...: MDGL41AA Matrix...... WQ

Date Sampled...: 01/13/11 10:35 Date Received..: 01/19/11 Prep Date....: 01/24/11 Analysis Date..: 01/24/11

Prep Batch #...: 1025236

Dilution Factor: 1 Method.....: SW846 8260B

		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Acetone	ND	10	ug/L
Benzene	ND	1.0	ug/L
Bromodichloromethane	ND	1.0	ug/L
Bromoform	ND	1.0	ug/L
Bromomethane	ND	1.0	ug/L
2-Butanone	ND	10	ug/L
Carbon disulfide	ND	1.0	ug/L
Carbon tetrachloride	ND	1.0	ug/L
Chlorobenzene	ND	1.0	ug/L
Chloroethane	ND	1.0	ug/L
Chloroform	ND	1.0	ug/L
Chloromethane	ND	1.0	ug/L
Dibromochloromethane	ND	1.0	ug/L
1,2-Dibromo-3-chloro-	ND	2.0	ug/L
propane			
1,2-Dibromoethane	ND	1.0	ug/L
1,2-Dichlorobenzene	ND	1.0	ug/L
1,3-Dichlorobenzene	ND	1.0	ug/L
1,4-Dichlorobenzene	ND	1.0	ug/L
Dichlorodifluoromethane	ND	1.0	ug/L
1,1-Dichloroethane	ND	1.0	ug/L
1,2-Dichloroethane	ND	1.0	ug/L
1,1-Dichloroethene	ND	1.0	${ t ug/L}$
cis-1,2-Dichloroethene	ND	1.0	$\mathtt{ug/L}$
trans-1,2-Dichloroethene	ND	1.0	ug/L
1,2-Dichloropropane	ND	1.0	ug/L
cis-1,3-Dichloropropene	ND	1.0	ug/L
trans-1,3-Dichloropropene	ND	1.0	${ t ug/L}$
Ethylbenzene	ND	1.0	ug/L
2-Hexanone	ND	10	ug/L
Isopropylbenzene	ND	1.0	ug/L
Methylene chloride	ND	1.0	ug/L
4-Methyl-2-pentanone	ND	10	ug/L
Methyl tert-butyl ether	ND	5.0	ug/L
Styrene	ND	1.0	ug/L
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L
Tetrachloroethene	ND	1.0	ug/L
Toluene	ND	1.0	ug/L
1,2,4-Trichloro-	ND	1.0	ug/L
benzene			

Client Sample ID: EQUIPMENT BLANK

GC/MS Volatiles

Lot-Sample #: A1A190466-015 Work O	rder #:	MDGL41AA	Matrix	ΝŌ
------------------------------------	---------	----------	--------	----

		REPORTIN	IG
PARAMETER	RESULT	LIMIT	UNITS
1,1,1-Trichloroethane	ND	1.0	ug/L
1,1,2-Trichloroethane	ND	1.0	ug/L
Trichloroethene	ND	1.0	ug/L
Trichlorofluoromethane	ND	1.0	ug/L
Vinyl chloride	ND	1.0	ug/L
Xylenes (total)	ND	2.0	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Dibromofluoromethane	97	(75 - 12	21)
1,2-Dichloroethane-d4	94	(63 - 12	29)
Toluene-d8	88	(74 - 11)	.5)
4-Bromofluorobenzene	89	(66 - 11	.7)

Client Sample ID: TB-01

GC/MS Volatiles

Lot-Sample #...: A1A190466-016 Work Order #...: MDGMA1AA Matrix...... WQ

Date Sampled...: 01/14/11 Date Received..: 01/19/11 Prep Date....: 01/24/11 Analysis Date..: 01/24/11

Prep Batch #...: 1025236

Dilution Factor: 1 Method.....: SW846 8260B

		REPORTIN	G
PARAMETER	RESULT	LIMIT	UNITS
Acetone	14	10	ug/L
Benzene	ND	1.0	ug/L
Bromodich1oromethane	ND	1.0	ug/L
Bromoform	ND	1.0	ug/L
Bromomethane	ND	1.0	ug/L
2-Butanone	ND	10	ug/L
Carbon disulfide	ND	1.0	ug/L
Carbon tetrachloride	ND	1.0	ug/L
Chlorobenzene	ND	1.0	ug/L
Chloroethane	ND	1.0	ug/L
Chloroform	ND	1.0	ug/L
Chloromethane	ND	1.0	ug/L
Dibromochloromethane	ND	1.0	ug/L
1,2-Dibromo-3-chloro-	ND	2.0	ug/L
propane			
1,2-Dibromoethane	ND	1.0	ug/L
1,2-Dichlorobenzene	ND	1.0	ug/L
1,3-Dichlorobenzene	ND	1.0	ug/L
1,4-Dichlorobenzene	ND	1.0	ug/L
Dichlorodifluoromethane	ND	1.0	ug/L
1,1-Dichloroethane	ND	1.0	ug/L
1,2-Dichloroethane	ND	1.0	ug/L
1,1-Dichloroethene	ND	1.0	ug/L
cis-1,2-Dichloroethene	ND	1.0	ug/L
trans-1,2-Dichloroethene	ND	1.0	ug/L
1,2-Dichloropropane	ND	1.0	ug/L
cis-1,3-Dichloropropene	ND	1.0	ug/L
trans-1,3-Dichloropropene	ND	1.0	ug/L
Ethylbenzene	ND	1.0	ug/L
2-Hexanone	ND	10	ug/L
Isopropylbenzene	ND	1.0	ug/L
Methylene chloride	ND	1.0	ug/L
4-Methyl-2-pentanone	ND	10	ug/L
Methyl tert-butyl ether	ND	5.0	ug/L
Styrene	ND	1.0	ug/L
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L
Tetrachloroethene	ND	1.0	ug/L
Toluene	ND	1.0	ug/L
1,2,4-Trichloro-	ND	1.0	ug/L
benzene			-

Client Sample ID: TB-01

GC/MS Volatiles

mple #: A1A190466-016 Work Order #: MDGMA1AA Matrix V	ΝO
ipie #: Alaiyu400-u10 wolk Older #: Mugmalaa Mat	LIX

		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
1,1,1-Trichloroethane	ND	1.0	ug/L
1,1,2-Trichloroethane	ND	1.0	ug/L
Trichloroethene	ND	1.0	ug/L
Trichlorofluoromethane	ND	1.0	ug/L
Vinyl chloride	ND	1.0	ug/L
Xylenes (total)	ND	2.0	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	_
Dibromofluoromethane	96	(75 - 121)	
1,2-Dichloroethane-d4	95	(63 - 129))
Toluene-d8	92	(74 - 115))
4-Bromofluorobenzene	88	(66 - 117)	

Client Sample ID: TB-02

GC/MS Volatiles

Lot-Sample #...: A1A190466-017 Work Order #...: MDGME1AA Matrix.....: WQ

Date Sampled...: 01/14/11 Date Received..: 01/19/11 Prep Date....: 01/24/11 Analysis Date..: 01/24/11

Prep Batch #...: 1025236

Dilution Factor: 1 Method.....: SW846 8260B

		REPORTIN	IG
PARAMETER	RESULT	LIMIT	UNITS
Acetone	15	10	ug/L
Benzene	ND	1.0	ug/L
Bromodichloromethane	ND	1.0	ug/L
Bromoform	ND	1.0	ug/L
Bromomethane	ND	1.0	ug/L
2-Butanone	ND	10	ug/L
Carbon disulfide	ND	1.0	ug/L
Carbon tetrachloride	ND	1.0	ug/L
Chlorobenzene	ND	1.0	ug/L
Chloroethane	ND	1.0	ug/L
Chloroform	ND	1.0	ug/L
Chloromethane	ND	1.0	ug/L
Dibromochloromethane	ND	1.0	ug/L
1,2-Dibromo-3-chloro-	ND	2.0	ug/L
propane			
1,2-Dibromoethane	ND	1.0	ug/L
1,2-Dichlorobenzene	ND	1.0	ug/L
1,3-Dichlorobenzene	ND	1.0	ug/L
1,4-Dichlorobenzene	ND	1.0	ug/L
Dichlorodifluoromethane	ND	1.0	ug/L
1,1-Dichloroethane	ND	1.0	ug/L
1,2-Dichloroethane	ND	1.0	ug/L
1,1-Dichloroethene	ND	1.0	ug/L
cis-1,2-Dichloroethene	ND	1.0	ug/L
trans-1,2-Dichloroethene	ND	1.0	ug/L
1,2-Dichloropropane	ND	1.0	ug/L
cis-1,3-Dichloropropene	ND	1.0	ug/L
trans-1,3-Dichloropropene	ND	1.0	ug/L
Ethylbenzene	ND	1.0	ug/L
2-Hexanone	ND	10 .	ug/L
Isopropylbenzene	ND	1.0	ug/L
Methylene chloride	ND	1.0	ug/L
4-Methyl-2-pentanone	ND	10	ug/L
Methyl tert-butyl ether	ND	5.0	ug/L
Styrene	ND	1.0	ug/L
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L
Tetrachloroethene	ND	1.0	ug/L
Toluene	ND	1.0	ug/L
1,2,4-Trichloro- benzene	ND	1.0	ug/L

Client Sample ID: TB-02

GC/MS Volatiles

Lot-Sample #: A1A190466-017 Work Orde	. # :	MDGME1AA	Matrix	: WO
---------------------------------------	-------	----------	--------	------

PARAMETER 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethene Trichlorofluoromethane Vinyl chloride	RESULT ND ND ND ND ND ND	REPORTING LIMIT UNITS 1.0 ug/L 1.0 ug/L 1.0 ug/L 1.0 ug/L 1.0 ug/L 1.0 ug/L
Xylenes (total)	ND	2.0 ug/L
SURROGATE	PERCENT RECOVERY	RECOVERY LIMITS
Dibromofluoromethane	98	(75 - 121)
1,2-Dichloroethane-d4	96	(63 - 129)
Toluene-d8	92	(74 - 115)
4-Bromofluorobenzene	86	(66 - 117)

QUALITY CONTROL SECTION

GC/MS Volatiles

Client Lot #...: A1A190466 Work Order #...: MDLG91AA Matrix.....: SOLID

MB Lot-Sample #: A1A210000-283

Prep Date....: 01/20/11

Analysis Date..: 01/20/11 Prep Batch #...: 1021283

Dilution Factor: 1

		REPORTING	;	
PARAMETER	RESULT	LIMIT	UNITS	METHOD
Acetone	ND	20	ug/kg	SW846 8260B
Benzene	ND	5.0	ug/kg	SW846 8260B
Bromodichloromethane	ND	5.0	ug/kg	SW846 8260B
Bromoform	ND	5.0	ug/kg	SW846 8260B
Bromomethane	ND	5.0	ug/kg	SW846 8260B
2-Butanone	ND	20	ug/kg	SW846 8260B
Carbon disulfide	ND	5.0	ug/kg	SW846 8260B
Carbon tetrachloride	ND	5.0	ug/kg	SW846 8260B
Chlorobenzene	ND	5.0	ug/kg	SW846 8260B
Chloroethane	ND	5.0	ug/kg	SW846 8260B
Chloroform	ND	5.0	ug/kg	SW846 8260B
Chloromethane	ND	5.0	ug/kg	SW846 8260B
Dibromochloromethane	ND	5.0	ug/kg	SW846 8260B
1,2-Dibromo-3-chloro-	ND	10	ug/kg	SW846 8260B
propane			979	
1,2-Dibromoethane	ND	5.0	ug/kg	SW846 8260B
1,2-Dichlorobenzene	ND	5.0	ug/kg	SW846 8260B
1,3-Dichlorobenzene	ND	5.0	ug/kg	SW846 8260B
1,4-Dichlorobenzene	ND	5.0	ug/kg	SW846 8260B
Dichlorodifluoromethane	ND	5.0	ug/kg	SW846 8260B
1,1-Dichloroethane	ND	5.0	ug/kg	SW846 8260B
1,2-Dichloroethane	ND	5.0	ug/kg	SW846 8260B
1,1-Dichloroethene	ND	5.0	ug/kg	SW846 8260B
cis-1,2-Dichloroethene	ND	5.0	ug/kg	SW846 8260B
trans-1,2-Dichloroethene	ND	5.0	ug/kg	SW846 8260B
1,2-Dichloropropane	ND	5.0	ug/kg	SW846 8260B
cis-1,3-Dichloropropene	ND	5.0	ug/kg	SW846 8260B
trans-1,3-Dichloropropene	ND	5.0	ug/kg	SW846 8260B
Ethylbenzene	ND	5.0	ug/kg	SW846 8260B
2-Hexanone	ND	20	ug/kg	SW846 8260B
Isopropylbenzene	ND	5.0	ug/kg	SW846 8260B
Methylene chloride	ND	5.0	ug/kg	SW846 8260B
4-Methyl-2-pentanone	ND	20	ug/kg	SW846 8260B
Methyl tert-butyl ether	ND	20	ug/kg	SW846 8260B
Styrene	ND	5.0	ug/kg	SW846 8260B
1,1,2,2-Tetrachloroethane	ND	5.0	ug/kg	SW846 8260B
Tetrachloroethene	ND	5.0	ug/kg	SW846 8260B
Toluene	ND	5.0	ug/kg	SW846 8260B
1,2,4-Trichloro-	ND	5.0	ug/kg	SW846 8260B
benzene			-	
1,1,1-Trichloroethane	ND	5.0	ug/kg	SW846 8260B

GC/MS Volatiles

Client Lot #...: A1A190466 Work Order #...: MDLG91AA Matrix.....: SOLID

		REPORTI	NG		
PARAMETER	RESULT	LIMIT	UNITS	METHOD	
1,1,2-Trichloroethane	ND	5.0	ug/kg	SW846 8260B	
Trichloroethene	ND	5.0	ug/kg	SW846 8260B	
Trichlorofluoromethane	ND	5.0	ug/kg	SW846 8260B	
Vinyl chloride	ND	5.0	ug/kg	SW846 8260B	
Xylenes (total)	ND	10	ug/kg	SW846 8260B	
	PERCENT	RECOVER	Y		
SURROGATE	RECOVERY	LIMITS			
Dibromofluoromethane	85	(68 - 110)			
1,2-Dichloroethane-d4	85	(64 - 1	10)		
Toluene-d8	93	(69 - 128)			
4-Bromofluorobenzene	86	(64 - 130)			

Calculations are performed before rounding to avoid round-off errors in calculated results.

GC/MS Volatiles

Client Lot #...: A1A190466 Work Order #...: MDMGA1AA Matrix.....: SOLID

MB Lot-Sample #: A1A240000-167

Prep Date....: 01/19/11

Analysis Date..: 01/21/11 Prep Batch #...: 1024167

Dilution Factor: 1

		REPORTI	NG	
PARAMETER	RESULT	LIMIT	UNITS	METHOD
Acetone	ND	1000	ug/kg	SW846 8260B
Benzene	ND	250	ug/kg	SW846 8260B
Bromodich1oromethane	ND	250	ug/kg	SW846 8260B
Bromoform	ND	250	ug/kg	SW846 8260B
Bromomethane	ND	250	ug/kg	SW846 8260B
2-Butanone	ND	1000	ug/kg	SW846 8260B
Carbon disulfide	ND	250	ug/kg	SW846 8260B
Carbon tetrachloride	ND	250	ug/kg	SW846 8260B
Chlorobenzene	ND	250	ug/kg	SW846 8260B
Dibromochloromethane	ND	250	ug/kg	SW846 8260B
1,2-Dibromo-3-chloro- propane	ND	500	ug/kg	SW846 8260B
Chloroethane	ND	250	ug/kg	SW846 8260B
Chloroform	ND	250	ug/kg ug/kg	SW846 8260B
Chloromethane	ND	250	ug/kg ug/kg	SW846 8260B
1,2-Dibromoethane	ND	250	ug/kg ug/kg	SW846 8260B
1,2-Dichlorobenzene	ND	250	ug/kg ug/kg	SW846 8260B
1,3-Dichlorobenzene	ND	250	ug/kg ug/kg	SW846 8260B
1,4-Dichlorobenzene	ND	250	ug/kg ug/kg	SW846 8260B
Dichlorodifluoromethane	ND	250	ug/kg ug/kg	SW846 8260B
1,1-Dichloroethane	ND	250	ug/kg ug/kg	SW846 8260B
1,2-Dichloroethane	ND	250	ug/kg ug/kg	SW846 8260B
1,1-Dichloroethene	ND	250	ug/kg ug/kg	SW846 8260B
cis-1,2-Dichloroethene	ND	250	ug/kg ug/kg	SW846 8260B
trans-1,2-Dichloroethene	ND	250	ug/kg ug/kg	SW846 8260B
1,2-Dichloropropane	ND	250	ug/kg ug/kg	SW846 8260B
cis-1,3-Dichloropropene	ND	250	ug/kg	SW846 8260B
trans-1,3-Dichloropropene	ND	250	ug/kg	SW846 8260B
Ethylbenzene	ND	250	ug/kg	SW846 8260B
Trichlorofluoromethane	ND	250	ug/kg	SW846 8260B
2-Hexanone	ND	1000	ug/kg	SW846 8260B
Isopropylbenzene	ND	250	ug/kg	SW846 8260B
Methylene chloride	ND	250	ug/kg	SW846 8260B
4-Methyl-2-pentanone	ND	1000	ug/kg	SW846 8260B
Styrene	ND	250	ug/kg	SW846 8260B
1,1,2,2-Tetrachloroethane	ND	250	ug/kg	SW846 8260B
Tetrachloroethene	ND	250	ug/kg	SW846 8260B
Toluene	ND	250	ug/kg	SW846 8260B
1,2,4-Trichloro-	ND	250	ug/kg	SW846 8260B
benzene			- J J	
1,1,1-Trichloroethane	ND	250	ug/kg	SW846 8260B

GC/MS Volatiles

Client Lot #...: A1A190466 Work Order #...: MDMGA1AA Matrix..... SOLID REPORTING PARAMETER METHOD RESULT LIMIT UNITS 1,1,2-Trichloroethane ND 250 SW846 8260B ug/kg Trichloroethene ND 250 ug/kg SW846 8260B Vinyl chloride ND 250 ug/kg SW846 8260B Xylenes (total) 500 SW846 8260B ND ug/kg Methyl tert-butyl ether 1000 SW846 8260B ND ug/kg PERCENT RECOVERY SURROGATE RECOVERY LIMITS Dibromofluoromethane 82 (30 - 122)(39 - 128)1,2-Dichloroethane-d4 88 Toluene-d8 87 (33 - 134)4-Bromofluorobenzene 85 (26 - 141)NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

GC/MS Volatiles

Client Lot #...: A1A190466 Work Order #...: MDN2H1AA Matrix...... WATER

MB Lot-Sample #: A1A250000-236

Prep Date....: 01/24/11

Analysis Date..: 01/24/11 Prep Batch #...: 1025236

Dilution Factor: 1

		REPORTI	NG			
PARAMETER	RESULT	LIMIT	UNITS	METHOD		
Acetone	ND	10	ug/L	SW846 8260B		
Benzene	ND	1.0	ug/L	SW846 8260B		
Bromodichloromethane	ND	1.0	ug/L	SW846 8260B		
Bromoform	ND	1.0	ug/L	SW846 8260B		
Bromomethane	ND	1.0	ug/L	SW846 8260B		
2-Butanone	ND	10	ug/L	SW846 8260B		
Carbon disulfide	ND	1.0	ug/L	SW846 8260B		
Carbon tetrachloride	, ND	1.0	ug/L	SW846 8260B		
Chlorobenzene	ND	1.0	ug/L	SW846 8260B		
Chloroethane	ND	1.0	ug/L	SW846 8260B		
Chloroform	ND	1.0	ug/L	SW846 8260B		
Chloromethane	ND	1.0	ug/L	SW846 8260B		
Dibromochloromethane	ND	1.0	ug/L	SW846 8260B		
1,2-Dibromo-3-chloro-	ND	2.0	ug/L	SW846 8260B		
propane						
1,2-Dibromoethane	ND	1.0	ug/L	SW846 8260B		
1,2-Dichlorobenzene	ND	1.0	ug/L	SW846 8260B		
1,3-Dichlorobenzene	ND	1.0	ug/L	SW846 8260B		
1,4-Dichlorobenzene	ND	1.0	ug/L	SW846 8260B		
Dichlorodifluoromethane	ND	1.0	ug/L	SW846 8260B		
1,1-Dichloroethane	ND	1.0	ug/L	SW846 8260B		
1,2-Dichloroethane	ND	1.0	ug/L	SW846 8260B		
1,1-Dichloroethene	ND	1.0	ug/L	SW846 8260B		
cis-1,2-Dichloroethene	ND	1.0	ug/L	SW846 8260B		
trans-1,2-Dichloroethene	ND	1.0	ug/L	SW846 8260B		
1,2-Dichloropropane	ND	1.0	ug/L	SW846 8260B		
cis-1,3-Dichloropropene	ND	1.0	ug/L	SW846 8260B		
trans-1,3-Dichloropropene	ND	1.0	ug/L	SW846 8260B		
Ethylbenzene	ND	1.0	ug/L	SW846 8260B		
2-Hexanone	ND	10	ug/L	SW846 8260B		
Isopropylbenzene	ND	1.0	ug/L	SW846 8260B		
Methylene chloride	ND	1.0	ug/L	SW846 8260B		
4-Methyl-2-pentanone	ND	10	ug/L	SW846 8260B		
Methyl tert-butyl ether	ND	5.0	ug/L	SW846 8260B		
Styrene	ND	1.0	ug/L	SW846 8260B		
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L	SW846 8260B		
Tetrachloroethene	ND	1.0	ug/L	SW846 8260B		
Toluene	ND .	1.0	ug/L	SW846 8260B		
1,2,4-Trichloro-	ND	1.0	ug/L	SW846 8260B		
benzene						
1,1,1-Trichloroethane	ND	1.0	ug/L	SW846 8260B		

GC/MS Volatiles

Client Lot #...: A1A190466 Work Order #...: MDN2H1AA Matrix.....: WATER

		REPORTI	NG		
PARAMETER	RESULT	LIMIT	UNITS	METHOD	
1,1,2-Trichloroethane	ND	1.0	ug/L	SW846 8260B	
Trichloroethene	ND	1.0	ug/L	SW846 8260B	
Trichlorofluoromethane	ND	1.0	ug/L	SW846 8260B	
Vinyl chloride	ND	1.0	ug/L	SW846 8260B	
Xylenes (total)	ND	2.0	ug/L	SW846 8260B	
	PERCENT	RECOVER	Y		
SURROGATE	RECOVERY	LIMITS			
Dibromofluoromethane	95	(75 - 121)			
1,2-Dichloroethane-d4	93	(63 - 129)			
Toluene-d8	92	(74 - 115)			
4-Bromofluorobenzene	88	(66 - 117)			
NOTE(S):					

Calculations are performed before rounding to avoid round-off errors in calculated results.

General Chemistry

Client Lot #...: A1A190466

Matrix..... SOLID

		REPORTIN	G		PREPARATION-	PREP
PARAMETER	RESULT	LIMIT	UNITS	METHOD	ANALYSIS DATE	BATCH #
Percent Solids		Work Order	#: MDHK41AA	MB Lot-Sample #:	A1A200000-055	
	ND	10.0	용	MCAWW 160.3 MOD	01/20-01/21/11	1020055
		Dilution Fact	tor: 1			

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

LABORATORY CONTROL SAMPLE EVALUATION REPORT

GC/MS Volatiles

Client Lot #...: A1A190466 Work Order #...: MDLG91AC-LCS Matrix.....: SOLID

LCS Lot-Sample#: A1A210000-283 MDLG91AD-LCSD

Prep Date....: 01/20/11 Analysis Date..: 01/20/11

Prep Batch #...: 1021283

Dilution Factor: 1

	PERCENT	RECOVERY		RPD	
PARAMETER	RECOVERY	LIMITS	RPD	LIMITS	METHOD
Benzene	112	(81 - 116)			SW846 8260B
	102	(81 - 116)	10	(0-30)	SW846 8260B
Chlorobenzene	105	(83 - 114)			SW846 8260B
	101	(83 - 114)	4.6	(0-30)	SW846 8260B
1,1-Dichloroethene	110	(83 - 131)			SW846 8260B
	99	(83 - 131)	10	(0-30)	SW846 8260B
Toluene	115	(86 - 123)			SW846 8260B
	108	(86 - 123)	5.7	(0-30)	SW846 8260B
Trichloroethene	113	(82 - 123)			SW846 8260B
	106	(82 - 123)	6.6	(0-30)	SW846 8260B
	•				
		PERCENT	RECOV	ERY	
SURROGATE		RECOVERY	LIMIT	<u>'S</u>	
Dibromofluoromethane		94	(68 -	110)	
		87	(68 -	110)	
1,2-Dichloroethane-d4		89	(64 -	110)	
		83	(64 -	110)	
Toluene-d8		99	(69 -	128)	
		96	(69 -	128)	
4-Bromofluorobenzene		103	(64 -	130)	
		100	(64 -	130)	

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

Bold print denotes control parameters

LABORATORY CONTROL SAMPLE EVALUATION REPORT

GC/MS Volatiles

Client Lot #...: A1A190466 Work Order #...: MDMGA1AC-LCS Matrix.....: SOLID

LCS Lot-Sample#: A1A240000-167 MDMGA1AD-LCSD

Prep Date....: 01/19/11 Analysis Date..: 01/21/11

Prep Batch #...: 1024167

Dilution Factor: 1

	PERCENT	RECOVERY	RP.	D	
PARAMETER	RECOVERY	LIMITS	RPD LI	MITS	METHOD
Benzene	97	(70 - 117)			SW846 8260B
	94	(70 - 117)	3.4 (0	-20)	SW846 8260B
Chlorobenzene	98	(71 - 116)			SW846 8260B
	95	(71 - 116)	2.8 (0	-30)	SW846 8260B
1,1-Dichloroethene	103	(44 - 143)			SW846 8260B
	84	(44 - 143)	21 (0	-30)	SW846 8260B
Toluene	99	(66 - 123)			SW846 8260B
	94	(66 - 123)	5.9 (0	-30)	SW846 8260B
Trichloroethene	98	(59 - 124)			SW846 8260B
	96	(59 - 124)	2.3 (0-	-30)	SW846 8260B
		PERCENT	RECOVERY		
SURROGATE		RECOVERY	LIMITS		
Dibromofluoromethane		92	(30 - 12)	2)	
		81	(30 - 12)	2)	
1,2-Dichloroethane-d4		90	(39 - 128)	8)	
		8 4	(39 - 128)	8)	
Toluene-d8		90	(33 - 134	4)	
		83	(33 - 134)	4)	
4-Bromofluorobenzene		84	(26 - 14)	1)	
		84	(26 - 14)	1)	
NOTE(S):					

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

Bold print denotes control parameters

LABORATORY CONTROL SAMPLE EVALUATION REPORT

GC/MS Volatiles

Client Lot #...: A1A190466 Work Order #...: MDN2H1AC Matrix...... WATER

LCS Lot-Sample#: A1A250000-236

Prep Batch #...: 1025236

Dilution Factor: 1

PARAMETER Benzene Chlorobenzene 1,1-Dichloroethene Toluene Trichloroethene	PERCENT RECOVERY 98 96 106 96	RECOVERY LIMITS (83 - 112) (85 - 110) (78 - 131) (84 - 111) (76 - 117)	METHOD SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B
SURROGATE Dibromofluoromethane 1,2-Dichloroethane-d4 Toluene-d8 4-Bromofluorobenzene		PERCENT RECOVERY 92 90 94 101	RECOVERY LIMITS (75 - 121) (63 - 129) (74 - 115) (66 - 117)

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

Bold print denotes control parameters

MATRIX SPIKE SAMPLE EVALUATION REPORT

GC/MS Volatiles

Client Lot #...: A1A190466 Work Order #...: MDGHV1AC-MS Matrix..... WATER

MS Lot-Sample #: A1A190447-006 MDGHV1AD-MSD

Date Sampled...: 01/18/11 10:30 Date Received..: 01/19/11
Prep Date....: 01/24/11 Analysis Date..: 01/24/11

Prep Batch #...: 1025236
Dilution Factor: 333.33

	PERCENT	RECOVERY		RPD		
PARAMETER	RECOVERY	LIMITS	RPD	LIMITS	METHOD	
Benzene	98	(72 - 121)			SW846 8260B	
	90	(72 - 121)	2.5	(0-30)	SW846 8260B	
Chlorobenzene	98	(80 - 110)			SW846 8260B	
	100	(80 - 110)	1.4	(0-30)	SW846 8260B	
1,1-Dichloroethene	110	(74 - 135)			SW846 8260B	
	109	(74 - 135)	1.0	(0-30)	SW846 8260B	
Toluene	102	(78 - 114)			SW846 8260B	
	101	(78 - 114)	1.0	(0-30)	SW846 8260B	
Trichloroethene	99	(66 - 120)			SW846 8260B	
	101	(66 - 120)	1.8	(0-30)	SW846 8260B	
		PERCENT		RECOVERY		
SURROGATE		RECOVERY		LIMITS		
Dibromofluoromethane		95		(75 - 12	1)	
		94		(75 - 12	1)	
1,2-Dichloroethane-d4		97		(63 - 12	9)	
		92		(63 - 12	9)	
Toluene-d8		98		(74 - 11)	5)	
		97		(74 - 11)	5)	
4-Bromofluorobenzene		101		(66 - 11	7)	
		101		(66 - 11	7)	

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

Bold print denotes control parameters

SAMPLE DUPLICATE EVALUATION REPORT

General Chemistry

Client Lot #...: A1A190466 Work Order #...: MDGVN-SMP Matrix.....: SOLID

MDGVN-DUP

Date Sampled...: 01/18/11 09:30 Date Received..: 01/19/11

% Moisture....: 25

DUPLICATE RPD PREPARATION-PREP PARAM RESULT RESULT UNITS RPD LIMIT METHOD ANALYSIS DATE BATCH # Percent Solids SD Lot-Sample #: A1A190508-002 74.8 72.7 (0-20) MCAWW 160.3 MOD 01/20-01/21/11 1020055 용 2.9

Dilution Factor: 1

SAMPLE DUPLICATE EVALUATION REPORT

General Chemistry

Client Lot #...: A1A190466 Work Order #...: MDGVR-SMP Matrix.....: SOLID

MDGVR-DUP

Date Sampled...: 01/18/11 10:10 Date Received..: 01/19/11

% Moisture....: 40

DUPLICATE RPD PREPARATION- PREP
PARAM RESULT UNITS RPD LIMIT METHOD ANALYSIS DATE BATCH #

Percent Solids SD Lot-Sample #: A1A190508-005

60.2 59.8 % 0.63 (0-20) MCAWW 160.3 MOD 01/20-01/21/11 1020055

Dilution Factor: 1

•	\subseteq
,	Chain
-	2
•	Custody
	¥
	Kecord
	•

THE LEADER IN ENVIRONMENTAL TESTING

1-19-(1 1000	Company:	Received in Laboratury by:	Date/Time:	Company:	linquished by:
Date/Time:		Received by:	Date/Time: 1	Company:	Inquisited by:
Date/Time:		Received by:	Date/Time: [[/ 15:00	M4teduco	
					COOLEAS
	Archive Yor Months	Sample Disposal (A fee may be assessed if samples are retained longer than I month) Return to Client Disposal By Lab Archive Yor Archive Yor	Unknown Sample Dispos	Skin Irritant Poison B	Possible Hazārd identification Non-Hazard Flammable
		X & X	*	12:05	115110-(19-4)
		× 60 ×	×	13:10	Ho-12 (0-2')-011311
		X	*	65:1)	118110-(00-10)-011311
		× 50 ×	*	11:38	HB-10 (8-10') - 011311
		×	×	01:10	HBO9 (6-8')-011311
		×	*	13:35	HB-0B (6-8')-011311
7		X GX	*	13:49	HB-07 (6-81)-011311
2 of 7		Xex		1-13-11 14:15	HB-06 (6-6')-011311
		× 6 ×	*	1 9:50	M3-03 (6-8')-011411
		× 6 ×	7	1-14-11 10:20	114110-(4-6)-011411
Sample Specific Notes / Special Instructions:		NaOH Zhae/ NaOH Unpres Other: 50351	Air Aqueous Sediment Solid Other: HZSO4 HNO3 HCI	Sample Date Sample Time	Sample Identification
		-80			0#
		1 day 2 days		Shipping/Trucking No:	roject Number: H10013-11
		1 weeks	ПП	Method of Shipment/Carrier:	Strongsville
		m below	TAT if differen		(4to) 357-1760
	Analyses		VCCV、COVX	dwetzel@hzwenv.com	Mentor, Ohio 44060
of D cocs	392)966-8296	Telephone:	Telephone:	Telephone:	6105 Heisley Road
COC No.	Northan Pretras	Nastwa Nastwa	Site Contact:	Down Wetzel	HZW Environmental
l'estAmerica Laboratories, Inc.					Client Contact
THE LEADER IN ENVIRONMENTAL TESTING		RCRA DO OTHER OH VAP	North Canton	TestAmerica Laboratory location: Regulatory program:	

C
Chain
2
Custod
toc
4
Te
Record
2

THE LEADER IN ENVIRONMENTAL TESTING

	Date/Time:	Company:			ory by:	Received in Laboratory by:	Received	. Ba			Datc/Time:	9		any:	Company			d by:	Relinquished by:
	Date/Time;	Company:				Ÿ.	Received by:				Datc/l'ime:			any:	Company:		Ow	J.	Relifquishe
	Date/Time:	Company:				ý;	Received by:		m:31	_	Ol-18-U	੦ ਚ		Company:	Comp		MAN!	J.M.	Relikfulsk
					-											S	2 coolers	85	
	nths	or Months	Archive Fo		Disposal		Client	Return to Client		Unknown]]	ηВ	Poison B		Skin Irritant	nments:	Non-Hazard Flammable Special Instructions/QC Requirements & Comments:	lal Instructions/QC Re	Special Inst
		.	nples are retained longer than I month)	uples are	sed if sa	(A fee may be assessed if sam	(A fee m	Sample Disposal	Sample						-		·	Possible Hazard Identification	Possible
											1								
· .								···									:		
_			メ					×				*						જ	76-02
			×					×	-			×						0	16-01
			*	9				×			^	×	10:35	1-14-1	-		VK.	FOULP BLANK	Maga
73				×	X	2/			-		×			1-13-11			HB-A (6-8') - 01131	(6-6)	HBA
3 of 7				×	メ	,					乄		11:24	1-14-1	-)-011411	18-18 (4-6°)	1-91
76				N	X			:			×		જમઃગ્ર	1-14-1	- ·	_	46-15 (4-61)-011411	5 (4-6)	1816
				5	^	~					ж	VI	S \$:81	1-13-11	7	=	13110-(101-8)	M-9) H	11-3
Sample Specific Notes / Special Instructions:	Sample Sp Special It		VOCs	VoCs	Other: 5035	Unpres	NaOH ZnAc/ NaOH	нсі	H2SO4 HNO3	Other:	Sediment Solld	Air Aqueous	Sample Time	Sample Date	Sam	The second control of the second seco	Sample Identification	Sam	we district the second will
			Ł	4000	體	THE STATE OF			10 10 10 10 10 10 10 10 10 10 10 10 10 1			254							PO#
			7 50	a second	No.	* VS	□ 2 days □ 1 day	ПП					ing No:	Shipping/Tracking No:	Shipp		~	Mumber:	Project Nu
			035	iver an		eks ek	2 weeks ☐ 1 week					ier:	Method of Shipment/Carrier:	od of Ship	Meth		lle	Strong Sville	Project Na
				ار بور ار بور		eks	ism below	AT if different from below	TAT								1260	(Hy) 357-1260	27.4.) (4.7.)
		Analyses				00000			*****	3	٧٨٠ د	dwetzel@hzwenv.com	0	retz	Q Email:	060	Menter, Ohio 44060	wtar o	City/State
يُّ مور	حو ا	8296	(336) 966-8296	Tel				. "	Telephone:				1	Tetephone:	Tetop	ŀ	6105 Heisley Road	5 Hersle	Address:
	COC No:	etras	Nathan Pretras	Lal				e e	Site Contact:			ed	Down Wetzel	Project N	Clien	λ.	the W Environmental	1 Enviro	Company Name:
oratories, Inc.	TestAmerica Laboratories, Inc.			ı	,										Ц		Client Contact		
MENTAL TESTING	THE LEADER IN ENVIRONMENTAL TESTING	THE	OH VAP	ther	₽		RCRA		MATMY.	_ ଚ	Text		Laberatory location: Regulatory program:	a Labera Regulat	TestAmerica Laboratory location: Regulatory program:	H			

∥ TestAmerica Cooler	Receipt Form/Narrative	Lot Number: AA 190466					
North Canton Facilit							
Client HZW Envir	mment Project Strongsville	By:_ \ \ \ \ \					
Cooler Received on	V=19-11 Opened on 1-19-il	(Signature)					
FedEx 🗍 UPS 🗗 DHL (☐ FAS ☐ Stetson ☐ Client Drop Off ☐ TestA	merica Courier Other					
TestAmerica Cooler #	AHOS DECK Multiple Coolers Foam Box [Client Cooler Other					
1. Were custody seals or	n the outside of the cooler(s)? Yes 🗌 No 🖸	intact? Yes 🗌 No 🔲 NA 💭					
If YES, Quantity	Quantity Unsalvageable						
	n the outside of cooler(s) signed and dated?	Yes 🗌 No 🗍 NA 🖸					
Were custody seals or	n the bottle(s)?	Yes 🗌 No 🖵					
If YES, are there any		·					
2. Shippers' packing slip	attached to the cooler(s)?	Yes 🖸 No 🗌					
	company the sample(s)? Yes No 🗌	Relinquished by client? Yes I No [
	ers signed in the appropriate place?	Yes ☑ No □					
	l: Bubble Wrap 🖸 Foam 🔲 None 🗌 O	ther					
6. Cooler temperature up		for multiple coolers/temps					
	R Other						
		None					
	good condition (Unbroken)?	Yes ☑ No □					
	be reconciled with the COC?	Yes No 🗆					
	e correct pH upon receipt?	Yes No NA P					
	used for the test(s) indicated?	Yes No 🗆					
, ,	· · · · · · · · · · · · · · · · · · ·	Yes ☐ No Æ NA ☐					
11. Were air bubbles >6 mm in any VOA vials? 12. Sufficient quantity received to perform indicated analyses? Yes ☐ No ☐ NA ☐ Yes ☐ No ☐							
13. Was a trip blank present in the cooler(s)? Yes No Were VOAs on the COC? Yes No Coolers and PM No Coolers N							
Contacted PM NAP Date 1-19-10 by via Verbal Voice Mail Other							
Concerning # 14							
14. CHAIN OF CUSTODY The following discrepancies occurred:							
,							
	gged TB-01 + TB-02 dates as	1/14/11 per NAP.					
İ							
AE SAMPLE CONDITION							
15. SAMPLE CONDITION							
Sample(s)		e recommended holding time had expired.					
Sample(s) Sample(s)	were received after th	were received in a broken container.					
Sample(s) Sample(s) Sample(s)	were received after th						
Sample(s) Sample(s) Sample(s) 16. SAMPLE PRESERVA	were received after th were received w	were received in a broken container. vith bubble >6 mm in diameter. (Notify PM)					
Sample(s) Sample(s) Sample(s) 16. SAMPLE PRESERVA Sample(s)	were received after th were received w	were received in a broken container. with bubble >6 mm in diameter. (Notify PM) were further preserved in Sample					
Sample(s) Sample(s) Sample(s) 16. SAMPLE PRESERVA Sample(s) Receiving to meet recomm	were received after th were received w ATION mended pH level(s). Nitric Acid Lot# 100110-HNO ₃ ; S	were received in a broken container. with bubble >6 mm in diameter. (Notify PM) were further preserved in Sample Sulfuric Acid Lot# 110410-H ₂ SO ₄ ; Sodium					
Sample(s) Sample(s) Sample(s) 16. SAMPLE PRESERVA Sample(s) Receiving to meet recommendations to the sample	were received after th were received w ATION mended pH level(s). Nitric Acid Lot# 100110-HNO ₃ ; S OH; Hydrochloric Acid Lot# 092006-HCl; Sodium Hydro	were received in a broken container. with bubble >6 mm in diameter. (Notify PM) were further preserved in Sample Sulfuric Acid Lot# 110410-H ₂ SO ₄ ; Sodium					
Sample(s) Sample(s) Sample(s) 16. SAMPLE PRESERVA Sample(s) Receiving to meet recomm Hydroxide Lot# 100108 -Nat (CH ₃ COO) ₂ ZN/NaOH. Wha	were received after th were received w ATION mended pH level(s). Nitric Acid Lot# 100110-HNO ₃ ; S OH; Hydrochloric Acid Lot# 092006-HCl; Sodium Hydro at time was preservative added to sample(s)?	were received in a broken container. with bubble >6 mm in diameter. (Notify PM) were further preserved in Sample Sulfuric Acid Lot# 110410-H ₂ SO ₄ ; Sodium oxide and Zinc Acetate Lot# 100108-					
Sample(s) Sample(s) Sample(s) 16. SAMPLE PRESERVA Sample(s) Receiving to meet recommendations to the sample	were received after th were received w ATION mended pH level(s). Nitric Acid Lot# 100110-HNO ₃ ; S OH; Hydrochloric Acid Lot# 092006-HCl; Sodium Hydro	were received in a broken container. with bubble >6 mm in diameter. (Notify PM) were further preserved in Sample Sulfuric Acid Lot# 110410-H ₂ SO ₄ ; Sodium					
Sample(s) Sample(s) Sample(s) 16. SAMPLE PRESERVA Sample(s) Receiving to meet recomm Hydroxide Lot# 100108 -Nat (CH ₃ COO) ₂ ZN/NaOH. Wha	were received after th were received w ATION mended pH level(s). Nitric Acid Lot# 100110-HNO ₃ ; S OH; Hydrochloric Acid Lot# 092006-HCl; Sodium Hydro at time was preservative added to sample(s)?	were received in a broken container. with bubble >6 mm in diameter. (Notify PM) were further preserved in Sample Sulfuric Acid Lot# 110410-H ₂ SO ₄ ; Sodium oxide and Zinc Acetate Lot# 100108-					
Sample(s) Sample(s) Sample(s) 16. SAMPLE PRESERVA Sample(s) Receiving to meet recomm Hydroxide Lot# 100108 -Nat (CH ₃ COO) ₂ ZN/NaOH. Wha	were received after th were received w ATION mended pH level(s). Nitric Acid Lot# 100110-HNO ₃ ; S OH; Hydrochloric Acid Lot# 092006-HCl; Sodium Hydro at time was preservative added to sample(s)?	were received in a broken container. with bubble >6 mm in diameter. (Notify PM) were further preserved in Sample Sulfuric Acid Lot# 110410-H ₂ SO ₄ ; Sodium oxide and Zinc Acetate Lot# 100108-					
Sample(s) Sample(s) Sample(s) 16. SAMPLE PRESERVA Sample(s) Receiving to meet recomm Hydroxide Lot# 100108 -Nat (CH ₃ COO) ₂ ZN/NaOH. Wha	were received after th were received w ATION mended pH level(s). Nitric Acid Lot# 100110-HNO ₃ ; S OH; Hydrochloric Acid Lot# 092006-HCl; Sodium Hydro at time was preservative added to sample(s)?	were received in a broken container. with bubble >6 mm in diameter. (Notify PM) were further preserved in Sample Sulfuric Acid Lot# 110410-H ₂ SO ₄ ; Sodium oxide and Zinc Acetate Lot# 100108-					
Sample(s) Sample(s) Sample(s) 16. SAMPLE PRESERVA Sample(s) Receiving to meet recomm Hydroxide Lot# 100108 -Nat (CH ₃ COO) ₂ ZN/NaOH. Wha	were received after th were received w ATION mended pH level(s). Nitric Acid Lot# 100110-HNO ₃ ; S OH; Hydrochloric Acid Lot# 092006-HCl; Sodium Hydro at time was preservative added to sample(s)?	were received in a broken container. with bubble >6 mm in diameter. (Notify PM) were further preserved in Sample Sulfuric Acid Lot# 110410-H ₂ SO ₄ ; Sodium oxide and Zinc Acetate Lot# 100108-					
Sample(s) Sample(s) Sample(s) 16. SAMPLE PRESERVA Sample(s) Receiving to meet recomm Hydroxide Lot# 100108 -Nat (CH ₃ COO) ₂ ZN/NaOH. Wha	were received after th were received w ATION mended pH level(s). Nitric Acid Lot# 100110-HNO ₃ ; S OH; Hydrochloric Acid Lot# 092006-HCl; Sodium Hydro at time was preservative added to sample(s)?	were received in a broken container. with bubble >6 mm in diameter. (Notify PM) were further preserved in Sample Sulfuric Acid Lot# 110410-H ₂ SO ₄ ; Sodium oxide and Zinc Acetate Lot# 100108-					
Sample(s) Sample(s) Sample(s) 16. SAMPLE PRESERVA Sample(s) Receiving to meet recomm Hydroxide Lot# 100108 -Nat (CH ₃ COO) ₂ ZN/NaOH. Wha	were received after th were received w ATION mended pH level(s). Nitric Acid Lot# 100110-HNO ₃ ; S OH; Hydrochloric Acid Lot# 092006-HCl; Sodium Hydro at time was preservative added to sample(s)?	were received in a broken container. with bubble >6 mm in diameter. (Notify PM) were further preserved in Sample Sulfuric Acid Lot# 110410-H ₂ SO ₄ ; Sodium oxide and Zinc Acetate Lot# 100108-					
Sample(s) Sample(s) Sample(s) 16. SAMPLE PRESERVA Sample(s) Receiving to meet recomm Hydroxide Lot# 100108 -Nat (CH ₃ COO) ₂ ZN/NaOH. Wha	were received after th were received w ATION mended pH level(s). Nitric Acid Lot# 100110-HNO ₃ ; S OH; Hydrochloric Acid Lot# 092006-HCl; Sodium Hydro at time was preservative added to sample(s)?	were received in a broken container. with bubble >6 mm in diameter. (Notify PM) were further preserved in Sample Sulfuric Acid Lot# 110410-H ₂ SO ₄ ; Sodium oxide and Zinc Acetate Lot# 100108-					

	Receipt Form/Narrative ty <u>pH</u>	<u>Date</u>	<u>Initia</u>
· · ·			
	·		
	•		
		<u> </u>	
·			
·			
			
Cooler# ४५०५ ४५२ १	Temp. °C	Method	Coola
A405	2-9	IR	ice
7477	2-6		1
		1.5	
			-
			<u> </u>
***************************************			· · · · · ·
		····	
			
<u> </u>	Wall,		
repancies Cont'd:			1

END OF REPORT

Affidavit by Certified Lab Pursuant to OAC 3745-300-13(M)

TestAmerica Laboratories, Inc.

State of Ohio

ss:

County of Stark

- I, Dorothy J. Leeson, being first duly sworn according to law, state that, to the best of my knowledge, information and belief:
- 1. I am an adult over the age of eighteen (18) years old and competent to testify herein.
- 2. I am employed by TestAmerica Laboratories, Inc. as Quality Assurance Manager and authorized to submit this affidavit on behalf of TestAmerica North Canton.
- The purpose of this submission is to support a request for a no further action letter or other aspects of a voluntary action, under Ohio's Voluntary Action Program (VAP) as set forth in Ohio Revised Code Chapter 3746 and Ohio Administrative Code (OAC) Chapter 3745-300.
- 4. TestAmerica North Canton performed analyses on behalf of HZW Environmental Consultants for a voluntary action at property known as Strongsville, 14356-14440 Pearl Road, Strongsville, Ohio.
- This affidavit applies to and is submitted with the following information, data, documents or reports for the property:

Laboratory Report Number A1A210537

Report Date January 28, 2011

- 6. TestAmerica North Canton was a VAP certified laboratory pursuant to OAC 3745-300-04 when it performed analyses referenced herein.
- 7. The analyses under this affidavit consist of certified data, as described by OAC 3745-300-04(B) with the exception of the analytes, parameter groups, or methods listed below: Not applicable.
- 8. TestAmerica North Canton performed the analyses within its current VAP certification. The laboratory was certified for each analyte, parameter group and method used at the time that it performed the analyses. The analyses were performed consistent with the laboratory's standard operating procedures and quality assurance program plan as approved under OAC 3745-300-04.

9. The information, data, documents, and reports identified under this affidavit are true, accurate, and complete.

Further affiant sayeth naught.

Sworn to before me this

day of

Jeffre\ Notary

JEFFREY C. SMITH Notary Public, State of Ohio My Commission Expires Feb. 12, 2012

> Page 1 of 1 Revised 06/09

TestAmerica Laboratories, Inc.

ANALYTICAL REPORT

PROJECT NO. H10013-11

STRONGSVILLE

Lot #: A1A210537

Doug Wetzel

HZW Environmental Consultants 6105 Heisley Rd Mentor, OH 44060

TESTAMERICA LABORATORIES, INC.

Nathan Pietras

Project Manager

nathan.pietras@testamericainc.com

Approved for release Nathan Pietras Project Manager 1/31/2011 9:50 AM

January 28, 2011

CASE NARRATIVE

A1A210537

The following report contains the analytical results for three solid samples and one quality control sample submitted to TestAmerica North Canton by HZW Environmental Consultants from the STRONGSVILLE Site, project number H10013-11. The samples were received January 21, 2011, according to documented sample acceptance procedures.

TestAmerica utilizes USEPA approved methods in all analytical work. The samples presented in this report were analyzed for the parameter(s) listed on the analytical methods summary page in accordance with the method(s) indicated. Preliminary results were provided to Doug Wetzel on January 27, 2011. A summary of QC data for these analyses is included at the back of the report.

TestAmerica North Canton attests to the validity of the laboratory data generated by TestAmerica facilities reported herein. All analyses performed by TestAmerica facilities were done using established laboratory SOPs that incorporate QA/QC procedures described in the applicable methods. TestAmerica's operations groups have reviewed the data for compliance with the laboratory QA/QC plan, and data have been found to be compliant with laboratory protocols unless otherwise noted below.

All solid sample results are reported on an "as received" basis unless otherwise indicated by a dry weight adjustment footnote at the bottom of the analytical report page. The list of parameters which are never reported on a dry weight basis is included on the Sample Summary.

The test results in this report meet all NELAP requirements for parameters for which accreditation is required or available. Any exceptions to NELAP requirements are noted in this report. Pursuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory. This laboratory report is confidential and is intended for the sole use of TestAmerica and its client.

All parameters were evaluated to the reporting limit.

Please refer to the Quality Control Elements Narrative following this case narrative for additional quality control information.

If you have any questions, please call the Project Manager, Nathan Pietras, at 330-497-9396.

This report is sequentially paginated. The final page of the report is labeled as "END OF REPORT."

CASE NARRATIVE (continued)

SUPPLEMENTAL QC INFORMATION

SAMPLE RECEIVING

The temperature of the cooler upon sample receipt was 3.2°C.

GC/MS VOLATILES

There were no client requested Matrix Spike/Matrix Spike Duplicate (MS/MSD) samples in batch 1026114 and 1026311. Therefore, the laboratory has included a Laboratory Control Sample Duplicate (LCSD) in the QC batch. The LCSD recoveries, together with the LCS recoveries, are used to determine the reproducibility (precision) of the analytical system.

GENERAL CHEMISTRY

The analytical results met the requirements of the laboratory's QA/QC program.

OUALITY CONTROL ELEMENTS NARRATIVE

TestAmerica conducts a quality assurance/quality control (QA/QC) program designed to provide scientifically valid and legally defensible data. Toward this end, several types of quality control indicators are incorporated into the QA/QC program, which is described in detail in QA Policy, QA-003. These indicators are introduced into the sample testing process to provide a mechanism for the assessment of the analytical data. Program or agency specific requirements take precedence over the requirements listed in this narrative.

QC BATCH

Environmental samples are taken through the testing process in groups called QUALITY CONTROL BATCHES (QC batches). A QC batch contains up to twenty environmental samples of a similar matrix (water, soil) that are processed using the same reagents and standards. TestAmerica North Canton requires that each environmental sample be associated with a QC batch.

Several quality control samples are included in each OC batch and are processed identically to the twenty environmental samples.

For SW846/RCRA methods, QC samples include a METHOD BLANK (MB), a LABORATORY CONTROL SAMPLE (LCS) and, where appropriate, a MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD) pair or a MATRIX SPIKE/SAMPLE DUPLICATE (MS/DU) pair. If there is insufficient sample to perform an MS/MSD or an MS/DU, then a LABORATORY CONTROL SAMPLE DUPLICATE (LCSD) is included in the QC batch.

For 600 series/CWA methods, QC samples include a METHOD BLANK (MB), a LABORATORY CONTROL SAMPLE (LCS) and, where appropriate, a MATRIX SPIKE (MS). An MS is prepared and analyzed at a 10% frequency for GC Methods and at a 5% frequency for GC/MS methods.

LABORATORY CONTROL SAMPLE

The Laboratory Control Sample is a QC sample that is created by adding known concentrations of a full or partial set of target analytes to a matrix similar to that of the environmental samples in the QC batch. Multi peak responders may not be included in the target spike list due to co-elution. The LCS analyte recovery results are used to monitor the analytical process and provide evidence that the laboratory is performing the method within acceptable guidelines. All control analytes indicated by a bold type in the LCS must meet acceptance criteria. Failure to meet the established recovery guidelines requires the repreparation and reanalysis of all samples in the QC batch. Comparison of only the failed parameters from the first batch are evaluated. The only exception to the rework requirement is that if the LCS recoveries are biased high and the associated sample is ND (non-detected) for the parameter(s) of interest, the batch is acceptable.

At times, a Laboratory Control Sample Duplicate (LCSD) is also included in the QC batch. An LCSD is a QC sample that is created and handled identically to the LCS. Analyte recovery data from the LCSD is assessed in the same way as that of the LCS. The LCSD recoveries, together with the LCS recoveries, are used to determine the reproducibility (precision) of the analytical system. Precision data are expressed as relative percent differences (RPDs). If the RPD fails for an LCS/LCSD and yet the recoveries are within acceptance criteria, the batch is still acceptable.

METHOD BLANK

The Method Blank is a QC sample consisting of all the reagents used in analyzing the environmental samples contained in the QC batch. Method Blank results are used to determine if interference or contamination in the analytical system could lead to the reporting of false positive data or elevated analyte concentrations. All target analytes must be below the reporting limits (RL) or the associated sample(s) must be ND except under the following circumstances:

• Common organic contaminants may be present at concentrations up to 5 times the reporting limits. Common metals contaminants may be present at concentrations up to 2 times the reporting limit, or the reported blank concentration must be twenty fold less than the concentration reported in the associated environmental samples. (See common laboratory contaminants listed in the table.)

Volatile (GC or GC/MS)	Semivolatile (GC/MS)	Metals ICP-MS	Metals ICP Trace
Methylene Chloride,	Phthalate Esters	Copper, Iron, Zinc,	Copper, Iron, Zinc, Lead
Acetone, 2-Butanone		Lead, Calcium,	
		Magnesium, Potassium,	
		Sodium, Barium,	
		Chromium, Manganese	

QUALITY CONTROL ELEMENTS NARRATIVE (continued)

- Organic blanks will be accepted if compounds detected in the blank are present in the associated samples at levels 10 times the blank level. Inorganic blanks will be accepted if elements detected in the blank are present in the associated samples at 20 times the blank level.
- Blanks will be accepted if the compounds/elements detected are not present in any of the associated environmental samples.

Failure to meet these Method Blank criteria requires the repreparation and reanalysis of all samples in the QC batch.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE

A Matrix Spike and a Matrix Spike Duplicate are a pair of environmental samples to which known concentrations of a full or partial set of target analytes are added. The MS/MSD results are determined in the same manner as the results of the environmental sample used to prepare the MS/MSD. The analyte recoveries and the relative percent differences (RPDs) of the recoveries are calculated and used to evaluate the effect of the sample matrix on the analytical results. Due to the potential variability of the matrix of each sample, the MS/MSD results may not have an immediate bearing on any samples except the one spiked; therefore, the associated batch MS/MSD may not reflect the same compounds as the samples contained in the analytical report. When these MS/MSD results fail to meet acceptance criteria, the data is evaluated. If the LCS is within acceptance criteria, the batch is considered acceptable.

For certain methods, a Matrix Spike/Sample Duplicate (MS/DU) may be included in the QC batch in place of the MS/MSD. For the parameters (i.e. pH, ignitability) where it is not possible to prepare a spiked sample, a Sample Duplicate may be included in the QC batch. However, a Sample Duplicate is less likely to provide usable precision statistics depending on the likelihood of finding concentrations below the standard reporting limit. When the Sample Duplicate result fails to meet acceptance criteria, the data is evaluated.

For certain methods (600 series methods/CWA), a Matrix Spike is required in place of a Matrix Spike/Matrix Spike Duplicate (MS/MSD) or Matrix Spike/Sample Duplicate (MS/DU).

The acceptance criteria do not apply to samples that are diluted.

SURROGATE COMPOUNDS

In addition to these batch-related QC indicators, each organic environmental and QC sample is spiked with surrogate compounds. Surrogates are organic chemicals that behave similarly to the analytes of interest and that are rarely present in the environment. Surrogate recoveries are used to monitor the individual performance of a sample in the analytical system.

If surrogate recoveries are biased high in the LCS, LCSD, or the Method Blank, and the associated sample(s) are ND, the batch is acceptable. Otherwise, if the LCS, LCSD, or Method Blank surrogate(s) fail to meet recovery criteria, the entire sample batch is reprepared and reanalyzed. If the surrogate recoveries are outside criteria for environmental samples, the samples will be reprepared and reanalyzed unless there is objective evidence of matrix interference or if the sample dilution is greater than the threshold outlined in the associated method SOP.

The acceptance criteria do not apply to samples that are diluted. All other surrogate recoveries will be reported.

For the GC/MS BNA methods, the surrogate criterion is that two of the three surrogates for each fraction must meet acceptance criteria. The third surrogate must have a recovery of ten percent or greater.

For the Pesticide and PCB methods, the surrogate criterion is that one of two surrogate compounds must meet acceptance criteria. The second surrogate must have a recovery of 10% or greater.

TestAmerica Certifications and Approvals:

The laboratory is certified for the analytes listed on the documents below. These are available upon-request. California (#01144CA), Connecticut (#PH-0590), Florida (#E87225),

Illinois (#200004), Kansas (#E10336), Minnesota (#39-999-348), New Jersey (#OH001), New York (#10975), Nevada (#OH-000482008A), OhioVAP (#CL0024), Pennsylvania (#008), West Virginia (#210), Wisconsin (#999518190), NAVY, ARMY, USDA Soil Permit

N:\QAQC\Customer Service\Narrative - Combined RCRA CWA 032609.doc

EXECUTIVE SUMMARY - Detection Highlights

A1A210537

PARAMETER	RESULT	REPORTING LIMIT	UNITS	ANALYTICAL METHOD
HB-01(2-4')-012011 01/20/11 12:15	001			
Percent Solids	78.7	10.0	%	MCAWW 160.3 MOD
HB-04(4-6')-012011 01/20/11 13:40	002			
Toluene Percent Solids	440 76.4	260 10.0	ug/kg %	SW846 8260B MCAWW 160.3 MOD
HB-05(0-2')-012011 01/20/11 13:00	003			
Percent Solids	78.6	10.0	%	MCAWW 160.3 MOD
TB-03-012011 01/20/11 004				
Acetone	10	10	ug/L	SW846 8260B

ANALYTICAL METHODS SUMMARY

A1A210537

PARAMETER	ANALYTICAL METHOD
Total Residue as Percent Solids Volatile Organics by GC/MS	MCAWW 160.3 MOD SW846 8260B

References:

MCAWW "Methods for Chemical Analysis of Water and Wastes", EPA-600/4-79-020, March 1983 and subsequent revisions.

SW846 "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 and its updates.

SAMPLE SUMMARY

A1A210537

<u>WO #</u>	SAMPLE#	CLIENT SAMPLE ID	SAMPLED DATE	SAMP TIME
MDK0P MDK00 MDK03 MDK04	001 002 003 004	HB-01(2-4')-012011 HB-04(4-6')-012011 HB-05(0-2')-012011 TB-03-012011	01/20/11 01/20/11 01/20/11 01/20/11	13:40
NOTE 16	••			

NOTE (S):

- The analytical results of the samples listed above are presented on the following pages.
- All calculations are performed before rounding to avoid round-off errors in calculated results.
- Results noted as "ND" were not detected at or above the stated limit.
- This report must not be reproduced, except in full, without the written approval of the laboratory.
- Results for the following parameters are never reported on a dry weight basis: color, corrosivity, density, flashpoint, ignitability, layers, odor, paint filter test, pH, porosity pressure, reactivity, redox potential, specific gravity, spot tests, solids, solubility, temperature, viscosity, and weight.

Client Sample ID: HB-01(2-4')-012011

GC/MS Volatiles

Lot-Sample #...: A1A210537-001 Work Order #...: MDK0P1AC Matrix...... SO

Date Sampled...: 01/20/11 12:15 Date Received..: 01/21/11 Prep Date....: 01/25/11 Analysis Date..: 01/25/11

Prep Batch #...: 1026311
Dilution Factor: 0.84

% Moisture....: 21 **Method.....:** SW846 8260B

		REPORTIN	IG
PARAMETER	RESULT	LIMIT	UNITS
Acetone	ND	21	ug/kg
Benzene	ND	5.3	ug/kg
Bromodichloromethane	ND	5.3	ug/kg
Bromoform	ND	5.3	ug/kg
Bromomethane	ND	5.3	ug/kg
2-Butanone	ND	21	ug/kg
Carbon disulfide	ND	5.3	ug/kg
Carbon tetrachloride	ND	5.3	ug/kg
Chlorobenzene	ND	5.3	ug/kg
Chloroethane	ND	5.3	ug/kg
Chloroform	ND	5.3	ug/kg
Chloromethane	ND	5.3	ug/ k g
Dibromochloromethane	ND	5.3	ug/kg
1,2-Dibromo-3-chloro-	ND	11	ug/kg
propane			
1,2-Dibromoethane	ND	5.3	ug/kg
1,2-Dichlorobenzene	ND	5.3	ug/kg
1,3-Dichlorobenzene	ND	5.3	ug/kg
1,4-Dichlorobenzene	ND	5.3	ug/kg
Dichlorodifluoromethane	ND	5.3	ug/kg
1,1-Dichloroethane	ND	5.3	ug/kg
1,2-Dichloroethane	ND	5.3	ug/kg
1,1-Dichloroethene	ND	5.3	ug/kg
cis-1,2-Dichloroethene	ND	5.3	ug/kg
trans-1,2-Dichloroethene	ND	5.3	ug/kg
1,2-Dichloropropane	ND	5.3	ug/kg
cis-1,3-Dichloropropene	ND	5.3	ug/kg
trans-1,3-Dichloropropene	ND	5.3	ug/kg
Ethylbenzene	ND	5.3	ug/kg
2-Hexanone	ND	21	ug/kg
Isopropylbenzene	ND	5.3	ug/kg
Methylene chloride	ND	5.3	ug/kg
4-Methyl-2-pentanone	ND	21	ug/kg
Methyl tert-butyl ether	ND	21	ug/kg
Styrene	ND	5.3	ug/kg
1,1,2,2-Tetrachloroethane	ND	5.3	ug/kg
Tetrachloroethene	ND	5.3	ug/kg
Toluene	ND	5.3	ug/kg

Client Sample ID: HB-01(2-4')-012011

GC/MS Volatiles

Lot-Sample #...: A1A210537-001 Work Order #...: MDKOP1AC Matrix...... SO

		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
1,2,4-Trichloro-	ND	5.3	ug/kg
benzene			
1,1,1-Trichloroethane	ND	5.3	ug/kg
1,1,2-Trichloroethane	ND	5.3	ug/kg
Trichloroethene	ND	5.3	ug/kg
Trichlorofluoromethane	ND	5.3	ug/kg
Vinyl chloride	ND	5.3	ug/kg
Xylenes (total)	ND	11	ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Dibromofluoromethane	96	(68 - 110)	•
1,2-Dichloroethane-d4	91	(64 - 110)	
Toluene-d8	93	(69 - 128)	
4-Bromofluorobenzene	90	(64 - 130)	
NOTE(S):			

Results and reporting limits have been adjusted for dry weight.

Client Sample ID: HB-01(2-4')-012011

General Chemistry

Lot-Sample #...: A1A210537-001 Work Order #...: MDK0P Matrix.....: SO

Date Sampled...: 01/20/11 12:15 Date Received..: 01/21/11

% Moisture....: 21

 PARAMETER
 RESULT
 RL
 UNITS
 METHOD
 ANALYSIS DATE
 BATCH #

 Percent Solids
 78.7
 10.0
 %
 MCAWW 160.3 MOD
 01/24-01/25/11
 1024184

Dilution Factor: 1

Client Sample ID: HB-04(4-6')-012011

GC/MS Volatiles

Lot-Sample #...: A1A210537-002 Work Order #...: MDK001AC Matrix......: SO

Date Sampled...: 01/20/11 13:40 Date Received..: 01/21/11
Prep Date....: 01/21/11 Analysis Date..: 01/25/11

Prep Batch #...: 1026114

Dilution Factor: 0.8

% Moisture....: 24 **Method.....:** SW846 8260B

		REPORTIN	JG
PARAMETER	RESULT	LIMIT	UNITS
Acetone	ND	1000	ug/kg
Benzene	ND	260	ug/kg
Bromodichloromethane	ND	260	ug/kg
Bromoform	ND	260	ug/kg
Bromomethane	ND	260	ug/kg
2-Butanone	ND	1000	ug/kg
Carbon disulfide	ND	260	ug/kg
Carbon tetrachloride	ND	260	ug/kg
Chlorobenzene	ND	260	ug/kg
Dibromochloromethane	ND	260	ug/kg
1,2-Dibromo-3-chloro-	ND	520	ug/kg
propane			5, 5
Chloroethane	ND	260	ug/kg
Chloroform	ND	260	ug/kg
Chloromethane	ND ·	260	ug/kg
1,2-Dibromoethane	ND	260	ug/kg
1,2-Dichlorobenzene	ND	260	ug/kg
1,3-Dichlorobenzene	ND	260	ug/kg
1,4-Dichlorobenzene	ND	260	ug/kg
Dichlorodifluoromethane	ND	260	ug/kg
1,1-Dichloroethane	ND	260	ug/kg
1,2-Dichloroethane	ND	260	ug/kg
1,1-Dichloroethene	ND	260	ug/kg
cis-1,2-Dichloroethene	ND	260	ug/kg
trans-1,2-Dichloroethene	ND	260	ug/kg
1,2-Dichloropropane	ND	260	ug/kg
cis-1,3-Dichloropropene	ND	260	ug/kg
trans-1,3-Dichloropropene	ND	260	ug/kg
Ethylbenzene	ND	260	ug/kg
Trichlorofluoromethane	ND	260	ug/kg
2-Hexanone	ND	1000	ug/kg
Isopropylbenzene	ND	260	ug/kg
Methylene chloride	ND	260	ug/kg
4-Methyl-2-pentanone	ND	1000	ug/kg
Styrene	ND	260	ug/kg
1,1,2,2-Tetrachloroethane	ND	260	ug/kg
Tetrachloroethene	ND	260	ug/kg
Toluene	440	260	ug/kg

Client Sample ID: HB-04(4-6')-012011

GC/MS Volatiles

Lot-Sample #: A1A210537-002	Work Order #:	MDK001AC	Matrix SO
		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
1,2,4-Trichloro-	ND	260	ug/kg
benzene			
1,1,1-Trichloroethane	ND	260	ug/kg
1,1,2-Trichloroethane	ND	260	ug/kg
Trichloroethene	ND	260	ug/kg
Vinyl chloride	ND	260	ug/kg
Xylenes (total)	ND	520	ug/kg
Methyl tert-butyl ether	ND	1000	ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Dibromofluoromethane	63	(30 - 122)	
1,2-Dichloroethane-d4	66	(39 - 128)	
Toluene-d8	64	(33 - 134)	
4-Bromofluorobenzene	63	(26 - 141)	

Results and reporting limits have been adjusted for dry weight.

NOTE(S):

Client Sample ID: HB-04(4-6')-012011

General Chemistry

Lot-Sample #...: A1A210537-002 Work Order #...: MDK00 Matrix.....: SO

Date Sampled...: 01/20/11 13:40 Date Received..: 01/21/11

% Moisture....: 24

 PARAMETER
 RESULT
 RL
 UNITS
 METHOD
 ANALYSIS DATE
 BATCH #

 Percent Solids
 76.4
 10.0
 %
 MCAWW 160.3 MOD
 01/24-01/25/11
 1024184

Dilution Factor: 1

Client Sample ID: HB-05(0-2')-012011

GC/MS Volatiles

Lot-Sample #...: A1A210537-003 Work Order #...: MDK031AC Matrix.....: S0

Date Sampled...: 01/20/11 13:00 Date Received..: 01/21/11 Prep Date.....: 01/25/11 Analysis Date..: 01/25/11

Prep Batch #...: 1026311

Dilution Factor: 0.81

% Moisture....: 21 **Method.....:** SW846 8260B

		REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	
Acetone	ND -	21	ug/kg	
Benzene	ND	5.2	ug/kg	
Bromodich1oromethane	ND	5.2	ug/kg	
Bromoform	ND	5.2	ug/kg	
Bromomethane	ND	5.2	ug/kg	
2-Butanone	ND	21	ug/kg	
Carbon disulfide	ND	5.2	ug/kg	
Carbon tetrachloride	ND	5.2	ug/kg	
Chlorobenzene	ND	5.2	ug/kg	
Chloroethane	ND	5.2	ug/kg	
Chloroform	ND	5.2	ug/kg	
Chloromethane	ND	5.2	ug/kg	
Dibromochloromethane	ND	5.2	ug/kg	
1,2-Dibromo-3-chloro-	ND	10	ug/kg	
propane				
1,2-Dibromoethane	ND	5.2	ug/kg	
1,2-Dichlorobenzene	ND	5.2	ug/kg	
1,3-Dichlorobenzene	ND	5.2	ug/kg	
1,4-Dichlorobenzene	ND	5.2	ug/kg	
Dichlorodifluoromethane	ND	5.2	ug/kg	
1,1-Dichloroethane	ND	5.2	ug/kg	
1,2-Dichloroethane	ND	5.2	ug/kg	
1,1-Dichloroethene	ND	5.2	ug/kg	
cis-1,2-Dichloroethene	ND	5.2	ug/kg	
trans-1,2-Dichloroethene	ND	5.2	ug/kg	
1,2-Dichloropropane	ND	5.2	ug/kg	
cis-1,3-Dichloropropene	ND	5.2	ug/kg	
trans-1,3-Dichloropropene	ND	5.2	ug/kg	
Ethylbenzene	ND	5.2	ug/kg	
2-Hexanone	ND	21	ug/kg	
Isopropylbenzene	ND	5.2	ug/kg	
Methylene chloride	ND	5.2	ug/kg	
4-Methyl-2-pentanone	ND	21	ug/kg	
Methyl tert-butyl ether	ND	21	ug/kg	
Styrene	ND	5.2	ug/kg	
1,1,2,2-Tetrachloroethane	ND	5.2	ug/kg	
Tetrachloroethene	ND	5.2	ug/kg	
Toluene	ND	5.2	ug/kg	

Client Sample ID: HB-05(0-2')-012011

GC/MS Volatiles

Lot-Sample #	ŧ:	A1A210537-003	Work	Order	#:	MDK031AC	Matr	ix:	SO

		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
1,2,4-Trichloro-	ND	5.2	ug/kg
benzene			
1,1,1-Trichloroethane	ND	5.2	ug/kg
1,1,2-Trichloroethane	ND	5.2	ug/kg
Trichloroethene	ND	5.2	ug/kg
Trichlorofluoromethane	ND	5.2	ug/kg
Vinyl chloride	ND	5.2	ug/kg
Xylenes (total)	ND	10	ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	_
Dibromofluoromethane	88	(68 - 110)	
1,2-Dichloroethane-d4	85	(64 - 110)	
Toluene-d8	100	(69 - 128)	
4-Bromofluorobenzene	83	(64 - 130)	
NOTE(S).			

Results and reporting limits have been adjusted for dry weight.

Client Sample ID: HB-05(0-2')-012011

General Chemistry

Lot-Sample #...: A1A210537-003 Work Order #...: MDK03 Matrix.....: S0

Date Sampled...: 01/20/11 13:00 Date Received..: 01/21/11

% Moisture....: 21

 PARAMETER
 RESULT
 RL
 UNITS
 METHOD
 ANALYSIS
 DATE
 BATCH #

 Percent Solids
 78.6
 10.0
 %
 MCAWW 160.3 MOD
 01/24-01/25/11
 1024184

Dilution Factor: 1

Client Sample ID: TB-03-012011

GC/MS Volatiles

Lot-Sample #...: A1A210537-004 Work Order #...: MDK041AA Matrix...... WQ

 Date Sampled...:
 01/20/11
 Date Received...:
 01/21/11

 Prep Date.....:
 01/25/11
 Analysis Date...:
 01/25/11

Prep Batch #...: 1026203

Dilution Factor: 1 Method.....: SW846 8260B

		REPORTI	NG
PARAMETER	RESULT	LIMIT	UNITS
Acetone	10	10	ug/L
Benzene	ND	1.0	ug/L
Bromodichloromethane	ND	1.0	ug/L
Bromoform	ND	1.0	ug/L
Bromomethane	ND	1.0	ug/L
2-Butanone	ND	10	ug/L
Carbon disulfide	ND	1.0	ug/L
Carbon tetrachloride	ND	1.0	ug/L
Chlorobenzene	ND	1.0	ug/L
Chloroethane	ND	1.0	ug/L
Chloroform	ND	1.0	ug/L
Chloromethane	ND	1.0	ug/L
Dibromochloromethane	ND	1.0	ug/L
1,2-Dibromo-3-chloro-	ND	2.0	ug/L
propane			_
1,2-Dibromoethane	ND	1.0	ug/L
1,2-Dichlorobenzene	ND	1.0	ug/L
1,3-Dichlorobenzene	ND	1.0	ug/L
1,4-Dichlorobenzene	ND	1.0	ug/L
Dichlorodifluoromethane	ND	1.0	ug/L
1,1-Dichloroethane	ND	1.0	ug/L
1,2-Dichloroethane	ND	1.0	ug/L
1,1-Dichloroethene	ND	1.0	ug/L
cis-1,2-Dichloroethene	ND	1.0	ug/L
trans-1,2-Dichloroethene	ND	1.0	ug/L
1,2-Dichloropropane	ND	1.0	ug/L
cis-1,3-Dichloropropene	ND	1.0	ug/L
trans-1,3-Dichloropropene	ND	1.0	ug/L
Ethylbenzene	ND	1.0	ug/L
2-Hexanone	ND	10	ug/L
Isopropylbenzene	ND	1.0	ug/L
Methylene chloride	ND	1.0	ug/L
4-Methyl-2-pentanone	ND	10	ug/L
Methyl tert-butyl ether	ND	5.0	ug/L
Styrene	ND	1.0	ug/L
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L
Tetrachloroethene	ND	1.0	ug/L
Toluene	ND	1.0	ug/L
1,2,4-Trichloro-	ND	1.0	ug/L
benzene			-

Client Sample ID: TB-03-012011

GC/MS Volatiles

Lot-Sample #: A1A210537-004	Work Order #: MDK041AA	Matrix WQ
-----------------------------	------------------------	-----------

		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
1,1,1-Trichloroethane	ND	1.0	ug/L
1,1,2-Trichloroethane	ND	1.0	ug/L
Trichloroethene	ND	1.0	ug/L
Trichlorofluoromethane	ND	1.0	ug/L
Vinyl chloride	ND	1.0	ug/L
Xylenes (total)	ND	2.0	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	_
Dibromofluoromethane	84	(75 - 121)	_
1,2-Dichloroethane-d4	77	(63 - 129)	
Toluene-d8	84	(74 - 115)	
4-Bromofluorobenzene	87	(66 - 117)	

QUALITY CONTROL SECTION

GC/MS Volatiles

Client Lot #...: A1A210537 Work Order #...: MDPTM1AA Matrix.....: SOLID

MB Lot-Sample #: A1A260000-114

Prep Date....: 01/21/11

Analysis Date..: 01/25/11 Prep Batch #...: 1026114

Dilution Factor: 1

		REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	METHOD
Acetone	ND	1000	ug/kg	SW846 8260B
Benzene	ND	250	ug/kg	SW846 8260B
Bromodichloromethane	ND	250	ug/kg	SW846 8260B
Bromoform	ND	250	ug/kg	SW846 8260B
Bromomethane	ND	250	ug/kg	SW846 8260B
2-Butanone	ND	1000	ug/kg	SW846 8260B
Carbon disulfide	ND	250	ug/kg	SW846 8260B
Carbon tetrachloride	ND	250	ug/kg	SW846 8260B
Chlorobenzene	ND	250	ug/kg	SW846 8260B
Dibromochloromethane	ND	250	ug/kg	SW846 8260B
1,2-Dibromo-3-chloro-	ND	500	ug/kg	SW846 8260B
propane				
Chloroethane	ND	250	ug/kg	SW846 8260B
Chloroform	ND	250	ug/kg	SW846 8260B
Chloromethane	ND	250	ug/kg	SW846 8260B
1,2-Dibromoethane	ND	250	ug/kg	SW846 8260B
1,2-Dichlorobenzene	ND	250	ug/kg	SW846 8260B
1,3-Dichlorobenzene	ND.	250	ug/kg	SW846 8260B
1,4-Dichlorobenzene	ND	250	ug/kg	SW846 8260B
Dichlorodifluoromethane	ND	250	ug/kg	SW846 8260B
1,1-Dichloroethane	ND	250	ug/kg	SW846 8260B
1,2-Dichloroethane	ND	250	ug/kg	SW846 8260B
1,1-Dichloroethene	ND	250	ug/kg	SW846 8260B
cis-1,2-Dichloroethene	ND	250	ug/kg	SW846 8260B
trans-1,2-Dichloroethene	ND	250	ug/kg	SW846 8260B
1,2-Dichloropropane	ND	250	ug/kg	SW846 8260B
cis-1,3-Dichloropropene	ND	250	ug/kg	SW846 8260B
trans-1,3-Dichloropropene	ND	250	ug/kg	SW846 8260B
Ethylbenzene	ND	250	ug/kg	SW846 8260B
Trichlorofluoromethane	ND	250	ug/kg	SW846 8260B
2-Hexanone	ND	1000	ug/kg	SW846 8260B
Isopropylbenzene	ND	250	ug/kg	SW846 8260B
Methylene chloride	ND	250	ug/kg	SW846 8260B
4-Methyl-2-pentanone	ND	1000	ug/kg	SW846 8260B
Styrene	ND	250	ug/kg	SW846 8260B
1,1,2,2-Tetrachloroethane	ND	250	ug/kg	SW846 8260B
Tetrachloroethene	ND	250	ug/kg	SW846 8260B
Toluene	ND	250	ug/kg	SW846 8260B
1,2,4-Trichloro- benzene	ND	250	ug/kg	SW846 8260B
1,1,1-Trichloroethane	ND	250	ug/kg	SW846 8260B

GC/MS Volatiles

Client Lot #...: A1A210537 Work Order #...: MDPTM1AA Matrix.....: SOLID

		REPORTI	NG	
PARAMETER	RESULT	LIMIT	UNITS	METHOD
1,1,2-Trichloroethane	ND	250	ug/kg	SW846 8260B
Trichloroethene	ND	250	ug/kg	SW846 8260B
Vinyl chloride	ND	250	ug/kg	SW846 8260B
Xylenes (total)	ND	500	ug/kg	SW846 8260B
Methyl tert-butyl ether	ND	1000	ug/kg	SW846 8260B
	PERCENT	RECOVER	Y	
SURROGATE	RECOVERY	LIMITS		
Dibromofluoromethane	82	(30 - 1)	22)	
1,2-Dichloroethane-d4	82	(39 - 12	28)	
Toluene-d8	82	(33 - 13	34)	
4-Bromofluorobenzene	78	(26 - 14	41)	
NOTE(S):				

Calculations are performed before rounding to avoid round-off errors in calculated results.

GC/MS Volatiles

Client Lot #...: A1A210537 Work Order #...: MDP6N1AA Matrix...... WATER

MB Lot-Sample #: A1A260000-203

Prep Date....: 01/25/11

Analysis Date..: 01/25/11 Prep Batch #...: 1026203

Dilution Factor: 1

		REPORTING			
PARAMETER	RESULT	LIMIT	UNITS	METHOD	
Acetone	ND	10	ug/L	SW846 8260B	
Benzene	ND	1.0	ug/L	SW846 8260B	
Bromodichloromethane	ND	1.0	ug/L	SW846 8260B	
Bromoform	ND	1.0	ug/L	SW846 8260B	
Bromomethane	ND	1.0	ug/L	SW846 8260B	
2-Butanone	ND	10	ug/L	SW846 8260B	
Carbon disulfide	ND	1.0	ug/L	SW846 8260B	
Carbon tetrachloride	ND	1.0	ug/L	SW846 8260B	
Chlorobenzene	ND	1.0	ug/L	SW846 8260B	
Chloroethane	ND	1.0	ug/L	SW846 8260B	
Chloroform	ND	1.0	ug/L	SW846 8260B	
Chloromethane	ND	1.0	ug/L	SW846 8260B	
Dibromochloromethane	ND	1.0	ug/L	SW846 8260B	
1,2-Dibromo-3-chloro-	ND	2.0	ug/L	SW846 8260B	
propane		_,,	49, 4	5.0010 02005	
1,2-Dibromoethane	ND	1.0	ug/L	SW846 8260B	
1,2-Dichlorobenzene	ND	1.0	ug/L	SW846 8260B	
1,3-Dichlorobenzene	ND	1.0	ug/L	SW846 8260B	
1,4-Dichlorobenzene	ND	1.0	ug/L	SW846 8260B	
Dichlorodifluoromethane	ND	1.0	ug/L	SW846 8260B	
1,1-Dichloroethane	ND	1.0	ug/L	SW846 8260B	
1,2-Dichloroethane	ND	1.0	ug/L	SW846 8260B	
1,1-Dichloroethene	ND	1.0	ug/L	SW846 8260B	
cis-1,2-Dichloroethene	ND	1.0	ug/L	SW846 8260B	
trans-1,2-Dichloroethene	ND	1.0	ug/L	SW846 8260B	
1,2-Dichloropropane	ND	1.0	ug/L	SW846 8260B	
cis-1,3-Dichloropropene	ND	1.0	ug/L	SW846 8260B	
trans-1,3-Dichloropropene	ND	1.0	ug/L	SW846 8260B	
Ethylbenzene	ND	1.0	ug/L	SW846 8260B	
2-Hexanone	ND	10	ug/L	SW846 8260B	
Isopropylbenzene	ND	1.0	ug/L	SW846 8260B	
Methylene chloride	ND	1.0	ug/L	SW846 8260B	
4-Methyl-2-pentanone	ND	10	ug/L	SW846 8260B	
Methyl tert-butyl ether	ND	5.0	ug/L	SW846 8260B	
Styrene	ND	1.0	ug/L	SW846 8260B	
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L	SW846 8260B	
Tetrachloroethene	ND	1.0	ug/L	SW846 8260B	
Toluene	ND	1.0	ug/L	SW846 8260B	
1,2,4-Trichloro-	ND	1.0	ug/L	SW846 8260B	
benzene			J. —		
1,1,1-Trichloroethane	ND	1.0	\mathtt{ug}/\mathtt{L}	SW846 8260B	

GC/MS Volatiles

Client Lot #...: A1A210537 Work Order #...: MDP6N1AA Matrix.....: WATER

		REPORTI		
PARAMETER	RESULT	LIMIT	UNITS	METHOD
1,1,2-Trichloroethane	ND	1.0	ug/L	SW846 8260B
Trichloroethene	ND	1.0	ug/L	SW846 8260B
Trichlorofluoromethane	ND	1.0	ug/L	SW846 8260B
Vinyl chloride	ND	1.0	ug/L	SW846 8260B
Xylenes (total)	ND	2.0	ug/L	SW846 8260B
	PERCENT	RECOVER	Y	
SURROGATE	RECOVERY	LIMITS		
Dibromofluoromethane	86	(75 - 12)	21)	
1,2-Dichloroethane-d4	80	(63 - 129)		
Toluene-d8	83	(74 - 115)		
4-Bromofluorobenzene	83	(66 - 1	17)	
NOTE(S):				

Calculations are performed before rounding to avoid round-off errors in calculated results.

GC/MS Volatiles

Client Lot #...: A1A210537 Work Order #...: MDQ0Q1AA Matrix.....: SOLID

MB Lot-Sample #: A1A260000-311

Prep Date....: 01/25/11

Analysis Date..: 01/25/11 Prep Batch #...: 1026311

Dilution Factor: 1

		REPORTING			
PARAMETER	RESULT	LIMIT	UNITS	METHOD	
Acetone	ND	20	ug/kg	SW846 8260B	
Benzene	ND	5.0	ug/kg	SW846 8260B	
Bromodichloromethane	ND	5.0	ug/kg	SW846 8260B	
Bromoform	ND	5.0	ug/kg	SW846 8260B	
Bromomethane	ND	5.0	ug/kg	SW846 8260B	
2-Butanone	ND	20	ug/kg	SW846 8260B	
Carbon disulfide	ND	5.0	ug/kg	SW846 8260B	
Carbon tetrachloride	ND	5.0	ug/kg	SW846 8260B	
Chlorobenzene	ND	5.0	ug/kg	SW846 8260B	
Chloroethane	ND	5.0	ug/kg	SW846 8260B	
Chloroform	ND	5.0	ug/kg	SW846 8260B	
Chloromethane	ND	5.0	ug/kg	SW846 8260B	
Dibromochloromethane	ND	5.0	ug/kg	SW846 8260B	
1,2-Dibromo-3-chloro-	ND	10	ug/kg	SW846 8260B	
propane					
1,2-Dibromoethane	ND	5.0	ug/kg	SW846 8260B	
1,2-Dichlorobenzene	ND	5.0	ug/kg	SW846 8260B	
1,3-Dichlorobenzene	ND	5.0	ug/kg	SW846 8260B	
1,4-Dichlorobenzene	ND	5.0	ug/kg	SW846 8260B	
Dichlorodifluoromethane	ND	5.0	ug/kg	SW846 8260B	
1,1-Dichloroethane	ND	5.0	ug/kg	SW846 8260B	
1,2-Dichloroethane	ND	5.0	ug/kg	SW846 8260B	
1,1-Dichloroethene	ND	5.0	ug/kg	SW846 8260B	
cis-1,2-Dichloroethene	ND	5.0	ug/kg	SW846 8260B	
trans-1,2-Dichloroethene	ND	5.0	ug/kg	SW846 8260B	
1,2-Dichloropropane	ND	5.0	ug/kg	SW846 8260B	
cis-1,3-Dichloropropene	ND	5.0	ug/kg	SW846 8260B	
trans-1,3-Dichloropropene	ND	5.0	ug/kg	SW846 8260B	
Ethylbenzene	ND	5.0	ug/kg	SW846 8260B	
2-Hexanone	ND	20	ug/kg	SW846 8260B	
Isopropylbenzene	ND	5.0	ug/kg	SW846 8260B	
Methylene chloride	ND	5.0	ug/kg	SW846 8260B	
4-Methyl-2-pentanone	ND	20	ug/kg	SW846 8260B	
Methyl tert-butyl ether	ND	20	ug/kg	SW846 8260B	
Styrene	ND	5.0	ug/kg	SW846 8260B	
1,1,2,2-Tetrachloroethane	ND	5.0	ug/kg	SW846 8260B	
Tetrachloroethene	ND	5.0	ug/kg	SW846 8260B	
Toluene	ND	5.0	ug/kg	SW846 8260B	
1,2,4-Trichloro-	ND	5.0	ug/kg	SW846 8260B	
benzene					
1,1,1-Trichloroethane	ND	5.0	ug/kg	SW846 8260B	

GC/MS Volatiles

Client Lot #...: A1A210537 Work Order #...: MDQ0Q1AA Matrix...... SOLID

		REPORTI	NG	
PARAMETER	RESULT	LIMIT	UNITS	METHOD
1,1,2-Trichloroethane	ND	5.0	ug/kg	SW846 8260B
Trichloroethene	ND	5.0	ug/kg	SW846 8260B
Trichlorofluoromethane	ND	5.0	ug/kg	SW846 8260B
Vinyl chloride	ND	5.0	ug/kg	SW846 8260B
Xylenes (total)	ND	10	ug/kg	SW846 8260B
	PERCENT	RECOVER	Y	
SURROGATE	RECOVERY	LIMITS		
Dibromofluoromethane	90	(68 - 110)		
1,2-Dichloroethane-d4	89	(64 - 110)		
Toluene-d8	98	(69 - 128)		
4-Bromofluorobenzene	93	(64 - 1)	30)	

Calculations are performed before rounding to avoid round-off errors in calculated results.

METHOD BLANK REPORT

General Chemistry

Client Lot #...: A1A210537

Matrix..... SOLID

		REPORTING	3		PREPARATION-	PREP
PARAMETER	RESULT	LIMIT	UNITS	METHOD	ANALYSIS DATE	BATCH #
Percent Solids		Work Order	#: MDMH81AA	MB Lot-Sample #:	A1A240000-184	
	ND	10.0	90	MCAWW 160.3 MOD	01/24-01/25/11	1024184
		Dilution Fact	or: 1			

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

LABORATORY CONTROL SAMPLE EVALUATION REPORT

GC/MS Volatiles

Client Lot #...: A1A210537 Work Order #...: MDPTM1AC-LCS Matrix.....: SOLID

LCS Lot-Sample#: A1A260000-114 MDPTM1AD-LCSD

Prep Batch #...: 1026114

Dilution Factor: 1

•	PERCENT	RECOVERY		RPD	
PARAMETER	RECOVERY	LIMITS	RPD	LIMITS	METHOD
Benzene	92	(70 - 117)			SW846 8260B
	94	(70 - 117)	1.4	(0-20)	SW846 8260B
Chlorobenzene	96	(71 - 116)			SW846 8260B
	95	(71 - 116)	1.4	(0-30)	SW846 8260B
1,1-Dichloroethene	99	(44 - 143)			SW846 8260B
	94	(44 - 143)	5.1	(0-30)	SW846 8260B
Toluene	97	(66 - 123)			SW846 8260B
	97	(66 - 123)	0.38	(0-30)	SW846 8260B
Trichloroethene	97	(59 - 124)			SW846 8260B
	94	(59 - 124)	3.0	(0-30)	SW846 8260B
		PERCENT	RECOV	ERY	
SURROGATE		RECOVERY	LIMIT	'S	
Dibromofluoromethane		90	(30 -	122)	
		88	(30 -	122)	
1,2-Dichloroethane-d4		87	(39 -	128)	
		88	(39 -	128)	
Toluene-d8		88	(33 -	134)	
		87	(33 -	134)	
4-Bromofluorobenzene		86	(26 -	141)	
		84	(26 -	141)	

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

LABORATORY CONTROL SAMPLE EVALUATION REPORT

GC/MS Volatiles

Client Lot #...: A1A210537 Work Order #...: MDP6N1AC Matrix...... WATER

LCS Lot-Sample#: A1A260000-203

Prep Date....: 01/25/11 Analysis Date..: 01/25/11

Prep Batch #...: 1026203

Dilution Factor: 1

PARAMETER Benzene Chlorobenzene 1,1-Dichloroethene Toluene Trichloroethene	PERCENT RECOVERY 99 97 92 93 103	RECOVERY LIMITS (83 - 112) (85 - 110) (78 - 131) (84 - 111) (76 - 117)	METHOD SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B
SURROGATE Dibromofluoromethane 1,2-Dichloroethane-d4 Toluene-d8 4-Bromofluorobenzene	103	PERCENT RECOVERY 86 84 84	RECOVERY LIMITS (75 - 121) (63 - 129) (74 - 115) (66 - 117)

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

LABORATORY CONTROL SAMPLE EVALUATION REPORT

GC/MS Volatiles

Client Lot #...: A1A210537 Work Order #...: MDQ0Q1AC-LCS Matrix.....: SOLID

LCS Lot-Sample#: A1A260000-311 MDQ0Q1AD-LCSD

Prep Batch #...: 1026311

Dilution Factor: 1

	PERCENT	RECOVERY	F	RPD	
PARAMETER	RECOVERY	LIMITS	RPD I	LIMITS	METHOD
Benzene	109	(81 - 116)		_	SW846 8260B
	106	(81 - 116)	2.2	(0-30)	SW846 8260B
Chlorobenzene	104	(83 - 114)			SW846 8260B
	102	(83 - 114)	2.5	(0-30)	SW846 8260B
1,1-Dichloroethene	105	(83 - 131)			SW846 8260B
	108	(83 - 131)	2.9	(0-30)	SW846 8260B
Toluene	112	(86 ~ 123)			SW846 8260B
	106	(86 - 123)	5.3	(0-30)	SW846 8260B
Trichloroethene	109	(82 - 123)			SW846 8260B
	106	(82 - 123)	2.6	(0-30)	SW846 8260B
		PERCENT	RECOVER	RΥ	
SURROGATE		RECOVERY	LIMITS		
Dibromofluoromethane		91	(68 - 1	10)	
		94	(68 – 1	10)	
1,2-Dichloroethane-d4		91	(64 - 1	10)	
		90	(64 - 1	10)	
Toluene-d8		101	(69 - 1	28)	
		100	(69 - 1	28)	
4-Bromofluorobenzene		103	(64 - 1)	30)	
		107	(64 - 1	130)	

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

MATRIX SPIKE SAMPLE EVALUATION REPORT

GC/MS Volatiles

Client Lot #...: A1A210537 Work Order #...: MDG671AE-MS Matrix..... WATER

MS Lot-Sample #: C1A190533**-**006 MDG671AF-MSD

Date Sampled...: 01/18/11 12:33 Date Received..: 01/19/11
Prep Date....: 01/25/11 Analysis Date..: 01/25/11

Prep Batch #...: 1026203
Dilution Factor: 3.33

	PERCENT	RECOVERY		RPD	
PARAMETER	RECOVERY	LIMITS	RPD	LIMITS	METHOD
Benzene	98	(72 - 121)			SW846 8260B
	99	(72 - 121)	1.0	(0-30)	SW846 8260B
Chlorobenzene	94	(80 - 110)			SW846 8260B
	94	(80 - 110)	0.31	(0-30)	SW846 8260B
1,1-Dichloroethene	92	(74 - 135)			SW846 8260B
	92	(74 - 135)	0.23	(0-30)	SW846 8260B
Toluene	92	(78 - 114)			SW846 8260B
	92	(78 - 114)	0.80	(0-30)	SW846 8260B
Trichloroethene	106	(66 - 120)			SW846 8260B
	99	(66 - 120)	2.4	(0-30)	SW846 8260B
		PERCENT		RECOVERY	
SURROGATE		RECOVERY		LIMITS	
Dibromofluoromethane	-	88		(75 - 121	<u>)</u>
		89		(75 - 121)
1,2-Dichloroethane-d4		82		(63 - 129)
		80		(63 - 129)
Toluene-d8		83		(74 - 115)
		83		(74 - 115)
4-Bromofluorobenzene		90		(66 - 117	•
		90		(66 - 117	•
				,	,

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

SAMPLE DUPLICATE EVALUATION REPORT

General Chemistry

Client Lot #...: A1A210537 Work Order #...: MDKD3-SMP Matrix.....: SOLID

MDKD3-DUP

Date Sampled...: 01/17/11 11:15 Date Received..: 01/21/11

% Moisture....: 24

Dilution Factor: 1

SAMPLE DUPLICATE EVALUATION REPORT

General Chemistry

Client Lot #...: A1A210537 Work Order #...: MDK0P-SMP Matrix.....: SO

MDK0P-DUP

Date Sampled...: 01/20/11 12:15 Date Received..: 01/21/11

% Moisture....: 21

DUPLICATE RPD PREPARATION-PREP UNITS RPD LIMIT PARAM RESULT RESULT METHOD ANALYSIS DATE BATCH # Percent Solids SD Lot-Sample #: A1A210537-001 78.7 78.0 용 0.92 (0-20) MCAWW 160.3 MOD 01/24-01/25/11 1024184

Dilution Factor: 1

Mentor, Ohio 44060 HZW Environmental 6105 Heusley Rd. es Minerica Laboratories, Inc. All rights reserved. es Minerica & Design ^{ne} are trademasks of TestAmerica Laboratories, Inc. 4848-408-003 Strongsville HB-01 (2-41)-012011 TB-03-012011 110210- (2-0) 59-84 48-04 (4-6)-012011 H10013-11 Sample Identification Client Contact Skin Irritant Telephone: Wetzel Method of Shipment/Carrier Client Project Manager Company: Shipping/Tracking No: dwetzel@hzwenv.com 1-20-11 12:15 Sample Date HILL Environment Date Time: 1/8 (Sample Time 13:40 [3:00 Poison B Air North Canton Date/Time: Date/Time: Unknown 不 NPDES Telephone: Site Contact: H2SO4 11 08:50 Sample Disposal (A fee may be assessed if samples are retained like the samples are retained li メ 3 wooks 2 days RCRA Received by: I week ZnAc/ NaOH Other: 5035 k X other Oth VAP S \mathcal{Z} 5 \mathcal{Z} X メ Nathan Pletras (330) 266-8296 X VOCS-8260 Company: Analyses TestAmerica Laboratories, Inc. COC No: Datc/Time Sample Specific Notes / Special Instructions: es, TAL-0018 (1008). , coc 1850

Chain of Custody Record

TestAmerica

TestAmerica Cooler	Receipt Form/Narrative	Lot Number: A 1A 210537						
North Canton Facility		2/ 2/1						
Client #ZL		By: 11-2111						
Cooler Received on	1/21/11 Opened on 1/21/	(Signature)						
	FAS Stetson Client Drop Off TestA							
	Multiple Coolers Foam Box							
	1. Were custody seals on the outside of the cooler(s)? Yes ☐ No ☐ NA							
	Quantity Unsalvageable							
Were custody seals on	the outside of cooler(s) signed and dated?	Yes 🗌 No 🔲 NA 🔼						
Were custody seals on	the bottle(s)?	Yes 🗌 No 🖺						
If YES, are there any e	xceptions?	•						
2. Shippers' packing slip	attached to the cooler(s)?	Yes 🗌 No 🛭						
Did custody papers ac	company the sample(s)? Yes ☒ No ☐	Relinquished by client? Yes X No						
	ers signed in the appropriate place?	Yes 📉 No 🗌						
5. Packing material used:	: Bubble Wrap 🔲 Foam 🔼 None 🗀 Oi							
6. Cooler temperature up	on receipt 3, 2 °C See back of form to	for multiple coolers/temps 🗍						
METHOD: IR	Other 🛄	_						
		None						
	good condition (Unbroken)?	Yes No 🗆						
	be reconciled with the COC?	Yes No 🗆						
9. Were sample(s) at the		Yes 🗌 No 🗎 NA 🔯						
1 ' '	used for the test(s) indicated?	Yes 🗷 No 🗌						
11. Were air bubbles >6 m	•	Yes 🔲 No 🗍 NA 🔯						
	eived to perform indicated analyses?	Yes 🔯 No 🗌						
13. Was a trip blank prese	nt in the cooler(s)? Yes X No	As on the COC? Yes 🖾 No 📋						
K	Date by	via Verbal 📋 Voice Mail 🔲 Other 🔲						
Concerning	ALCOHOL MANAGEMENT AND							
14. CHAIN OF CUSTODY								
The following discrepancie	s occurred:							
	V AVENUE AND A SECOND ASSESSMENT							
15. SAMPLE CONDITION	<i>I</i>							
Sample(s)	were received after th	ne recommended holding time had expired.						
Sample(s)		were received in a broken container.						
Sample(s)		vith bubble >6 mm in diameter. (Notify PM)						
16. SAMPLE PRESERVA	TION	· · · · · · · · · · · · · · · · · · ·						
Sample(s)		were further preserved in Sample						
	nended pH level(s). Nitric Acid Lot# 100110-HNO3; S							
	OH; Hydrochloric Acid Lot# 092006-HCl; Sodium Hydro	oxide and Zinc Acetate Lot# 100108-						
	t time was preservative added to sample(s)?	Ph. 4						
Client ID	<u>pH</u>	<u>Date</u> <u>Initials</u>						

TestAmerica Cooler Receipt Form/Narrative North Canton Facility							
Client ID	На	<u>Date</u>	Initials				
		The state of the s					
Cooler#	Temp. °C	Method	Coolant				
		_					
<u> </u>							
·							
		<u>-</u>					
Discrepancies Cont'd:							
	ALL LINE AND ADDRESS OF THE PARTY OF THE PAR						
		<u> </u>					

END OF REPORT

APPENDIX C	
GROUNDWATER LABORATORY ANALYTICAL REPORT	
GROUND WITTER ENDORMIORT IN WILLTITCHE REFORT	

Certified Lab Affidavit

For VAP certified laboratories to attest to certified data under OAC 3745-300-13(N) and OAC 3745-300-04(A). (Note that Ohio EPA is to receive a legible copy of the CL's affidavit. The entity that was provided the CL's submission under affidavit may retain the CL's affidavit original.)

State of Ohio)	
)	ss:
County of Summit)	

- I, *Thomas Morsefield* being first duly sworn according to law, state that, to the best of my knowledge, information and belief:
- 1. I am an adult over the age of eighteen years old and competent to testify herein.
- 2. I am employed by Geo Analytical, Inc. (CL0008) as President. I am authorized to submit this affidavit on behalf of the laboratory.
- 3. The purpose of this submission is to support a request for a no further action letter or other aspects of a voluntary action, under Ohio's Voluntary Action Program (VAP) as set forth in Ohio Revised Code Chapter 3746 and Ohio Administrative Code (OAC) Chapter 3745-300.
- 4. Geo Analytical, Inc. performed analyses for HZW Environmental Consultants for a voluntary action at property known as Strongsville.
- 5. This affidavit applies to and is submitted with the following information, data, documents or reports for the property:

Document ID 1101019 Date of Document 01/28/2011

- 6. Geo Analytical, Inc. (CL0008) was a VAP certified laboratory pursuant to OAC 3745-300-04 when it performed the analyses referenced herein.
- 7. The analyses under this affidavit consist of certified data, as described by OAC 3745-300-04.
- 8. Geo Analytical, Inc. performed the analyses within its current VAP certification. The laboratory was certified for each analyte, parameter group and method used at the time that it performed the analyses. The analyses were performed consistent with the laboratory's standard operating procedures and quality assurance program plan as approved under OAC 3745-300-04.
- 9. The information, data, documents and reports identified under this affidavit are true, accurate and complete.

Certified Lab Affidavit Pursuant to OAC 3745-300-13(N) Page 2

Further affiant sayeth naught.

Signature of Affiant

Sworn to before me and subscribed in my presence this 28 day of

<u>wan</u>f, 2010

Judy A. Bell Notary Public

JUDY A. BELL, Notary Public In and for the State of Ohio My Commission Expires Apr. 25, 2012

Revised 5/09, 8/09; consistent with OAC 3745-300-04 (10/14/06, and rev. eff. 3/1/09)

Monday, January 24, 2011

Matt Knecht HZW Environmental Consultants 6105 Heisley Road Mentor, OH 44060

TEL: 440-357-1260 FAX 440-357-1510

RE: Strongsville - H10013-11

Dear Matt Knecht:

Order No.: 1101019

GEO Analytical, Inc. received 4 sample(s) on 1/19/2011 for the analyses presented in the following report.

Analyses and all data for associated QC met laboratory specifications except where noted in the Case Narrative.

If you have any questions regarding these tests results, please feel free to call.

Reviewed by

G E O Analytical, Inc

Date: 25-Jan-11

CLIENT: HZW Environmental Consultants

Project: Strongsville - H10013-11

Lab Order: 1101019

Work Order Sample Summary

7					
Lab Sample ID	Client Sample ID	Tag Number	Collection Date	Date Received	
1101019-001A	MW-B		1/14/2011 12:30:00 PM	1/19/2011	
1101019-002A	MW-C		1/14/2011 1:55:00 PM	1/19/2011	
1101019-003A	MW-D		1/14/2011 12:25:00 PM	1/19/2011	
1101019-004A	MW-E		1/14/2011 12:20:00 PM	1/19/2011	

G E O Analytical, Inc

G Analytical, Inc.

Date: 25-Jan-11

CLIENT:

HZW Environmental Consultants

Project:

Strongsville - H10013-11

Lab Order:

1101019

CASE NARRATIVE

None noted

Client Sample ID: MW-B

Tag Number:

CLIENT: HZW Environmental Consultants

Lab Order: 1101019

Project: Strongsville - H10013-11

Collection Date: 1/14/2011 12:30:00 PM

Lab ID: 1101019-001A Matrix: AQUEOUS Date Received: 1/19/2011

Analyses	Result	Limit Qual	Units	Date Analyzed
VOLATILE ORGANIC COMPOUNDS	IN WATER	SW8260A	(SW5030A)	Analyst: TM
1,1,1,2-Tetrachloroethane	ND	5.00	μg/L	1/20/2011 11:39:00 AM
1,1,1-Trichloroethane	ND	5.00	μg/L	1/20/2011 11:39:00 AM
1,1,2,2-Tetrachloroethane	ND	5.00	μg/L	1/20/2011 11:39:00 AM
1,1,2-Trichloroethane	ND	5.00	μg/L	1/20/2011 11:39:00 AM
1,1-Dichloroethane	ND	5.00	μg/L	1/20/2011 11:39:00 AM
1,1-Dichloroethene	ND	5.00	μg/L	1/20/2011 11:39:00 AM
1,1-Dichloropropene	ND	5.00	μg/L	1/20/2011 11:39:00 AM
1,2,3-Trichlorobenzene	ND	5.00	μg/L	1/20/2011 11:39:00 AM
1,2,3-Trichloropropane	ND	5.00	μg/L	1/20/2011 11:39:00 AM
1,2,4-Trichlorobenzene	ND	5.00	μg/L	1/20/2011 11:39:00 AM
1,2,4-Trimethylbenzene	ND	5.00	μg/L	1/20/2011 11:39:00 AM
1,2-Dibromo-3-chloropropane	ND	5.00	μg/L	1/20/2011 11:39:00 AM
1,2-Dibromoethane	ND	2.00	μg/L	1/20/2011 11:39:00 AM
1,2-Dichlorobenzene	ND	5.00	μg/L	1/20/2011 11:39:00 AM
1,2-Dichloroethane	ND.	5.00	μg/L	1/20/2011 11:39:00 AM
1,2-Dichloropropane	ND	5.00	μg/L	1/20/2011 11:39:00 AM
1,3,5-Trimethylbenzene	. ND	5.00	μg/L	1/20/2011 11:39:00 AM
1,3-Dichlorobenzene	ND	5.00	μg/L	1/20/2011 11:39:00 AM
1,3-Dichloropropane	ND	5.00	μg/L	1/20/2011 11:39:00 AM
1,4-Dichlorobenzene	ND	5.00	μg/L	1/20/2011 11:39:00 AM
2,2-Dichloropropane	ND	5.00	μg/L	1/20/2011 11:39:00 AM
2-Butanone	ND	100	μg/L	1/20/2011 11:39:00 AM
2-Chlorotoluene	ND	5.00	μg/L	1/20/2011 11:39:00 AM
2-Hexanone	. ND	100	μg/L	1/20/2011 11:39:00 AM
4-Chlorotoluene	ND	5.00	μg/L	1/20/2011 11:39:00 AM
4-Isopropyltoluene	ND	5.00	μg/L	1/20/2011 11:39:00 AM
4-Methyl-2-pentanone	ND	100	µg/L	1/20/2011 11:39:00 AM
Acetone	ND	100	μg/L	1/20/2011 11:39:00 AM
Benzene	ND	5.00	μg/L	1/20/2011 11:39:00 AM
Bromobenzene	ND	5.00	μg/L	1/20/2011 11:39:00 AM
Bromochloromethane	ND	5.00	μg/L	1/20/2011 11:39:00 AM
Bromodichloromethane	ND	5.00	μg/L	1/20/2011 11:39:00 AM
Bromoform	ND	5.00	µg/L	1/20/2011 11:39:00 AM
Bromomethane	ND	5.00	µg/L	1/20/2011 11:39:00 AM
Carbon disulfide	ND ND	5.00	µg/L	1/20/2011 11:39:00 AM
Carbon tetrachloride	ND	5.00	µg/L	1/20/2011 11:39:00 AM
Chlorobenzene	ND	5.00	µg/L	1/20/2011 11:39:00 AM
Chloroethane	ND	5.00	µg/L	1/20/2011 11:39:00 AM
Chloroform	ND	5.00	μg/L	1/20/2011 11:39:00 AM

Value exceeds Maximum Contaminant Level

Ε Value above quantitation range

J Analyte detected below quantitation limits

Spike Recovery outside accepted recovery limits

В Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

CLIENT: Lab Order: **HZW** Environmental Consultants

1101019

1101019-001A

Project: Lab ID:

Strongsville - H10013-11

Date Received: 1/19/2011

Client Sample ID: MW-B

Tag Number:

Collection Date: 1/14/2011 12:30:00 PM

Matrix: AQUEOUS

Analyses	Result	Limit Qua	Units	Date Analyzed
VOLATILE ORGANIC COMPOUNDS	IN WATER	SW8260A	(SW5030A)	Analyst: TM
Chloromethane	ND	5.00	μg/L	1/20/2011 11:39:00 AM
cis-1,2-Dichloroethene	ND	5.00	μg/L	1/20/2011 11:39:00 AM
cis-1,3-Dichloropropene	ND ND	5.00	μg/L	1/20/2011 11:39:00 AM
Dibromochloromethane	ND	5.00	μg/L	1/20/2011 11:39:00 AM
Dibromomethane	ND	5.00	μg/L	1/20/2011 11:39:00 AM
Dichlorodifluoromethane	ND	5.00	μg/L	1/20/2011 11:39:00 AM
Ethylbenzene	ND	5,00	μg/L	1/20/2011 11:39:00 AM
Hexachlorobutadiene	. ND	5.00	μg/L	1/20/2011 11:39:00 AM
Isopropylbenzene	ND	5.00	μg/L	1/20/2011 11:39:00 AM
m,p-Xylene	ND	. 5.00	μg/L	1/20/2011 11:39:00 AM
Methyl tert-butyl ether	ND .	5.00	μg/L	1/20/2011 11:39:00 AM
Methylene chloride	ND	5.00	μg/L	1/20/2011 11:39:00 AM
Naphthalene	ND ·	5.00	μg/L	1/20/2011 11:39:00 AM
n-Butylbenzene	ND	5.00	μg/L	1/20/2011 11:39:00 AM
n-Propylbenzene	ND	5.00	μg/L	1/20/2011 11:39:00 AM
o-Xylene	, ND	5.00	μg/L	1/20/2011 11:39:00 AM
sec-Butylbenzene	ND	5.00	μg/L	1/20/2011 11:39:00 AM
Styrene	ND	5.00	μg/L	1/20/2011 11:39:00 AM
tert-Butylbenzene	ND.	5.00	μg/L	1/20/2011 11:39:00 AM
Tetrachloroethene	ND	5.00	μg/L	1/20/2011 11:39:00 AM
Toluene	ND	5.00	μg/L	1/20/2011 11:39:00 AM
trans-1,2-Dichloroethene	ND	5.00	μg/L	1/20/2011 11:39:00 AM
trans-1,3-Dichloropropene	ND	5.00	μg/L	1/20/2011 11:39:00 AM
Trichloroethene	ND	5.00	μg/L	1/20/2011 11:39:00 AM
Trichlorofluoromethane	ND	5.00	μg/L	1/20/2011 11:39:00 AM
Vinyl acetate	ND	100	μg/L	1/20/2011 11:39:00 AM
Vinyl chloride	ND	2.00	μg/L	1/20/2011 11:39:00 AM
Surr: 1,2-Dichloroethane d4	96.7	78.2-129	%REC	1/20/2011 11:39:00 AM
Surr: Bromofluorobenzene	99.3	83-120	%REC	1/20/2011 11:39:00 AM
Surr: Toluene-d8	101	90.3-117	%REC	1/20/2011 11:39:00 AM

Value exceeds Maximum Contaminant Level

E Value above quantitation range

Analyte detected below quantitation limits J

Spike Recovery outside accepted recovery limits

В Analyte detected in the associated Method Blank

Η Holding times for preparation or analysis exceeded

Not Detected at the Reporting Limit

CLIENT: HZW

HZW Environmental Consultants

Client Sample ID: MW-C

Lab Order:

1101019

Tag Number:

Project:

Strongsville - H10013-11

Collection Date: 1/14/2011 1:55:00 PM

Lab ID:

1101019-002A

Date Received: 1/19/2011

Matrix: AQUEOUS

Analyses	Result	Limit Qual	Units	Date Analyzed
VOLATILE ORGANIC COMPOUNDS	S IN WATER	SW8260A	(SW5030A)	Analyst: TM
1,1,1,2-Tetrachloroethane	, ND	5.00	μg/L	1/20/2011 1:51:00 PM
1,1,1-Trichloroethane	ND	5.00	μg/L	1/20/2011 1:51:00 PM
1,1,2,2-Tetrachloroethane	ND	5.00	μg/L	1/20/2011 1:51:00 PM
1,1,2-Trichloroethane	ND	5.00	µg/L	1/20/2011 1:51:00 PM
1,1-Dichloroethane	ND	5.00	μg/L	1/20/2011 1:51:00 PM
1,1-Dichloroethene	ND	5.00	μg/L	1/20/2011 1:51:00 PM
1,1-Dichloropropene	ND.	5.00	μg/L	1/20/2011 1:51:00 PM
1,2,3-Trichlorobenzene	ND	5.00	μg/L	1/20/2011 1:51:00 PM
1,2,3-Trichloropropane	ND	5.00	μg/L	1/20/2011 1:51:00 PM
1,2,4-Trichlorobenzene	· ND	5.00	μg/L	1/20/2011 1:51:00 PM
1,2,4-Trimethylbenzene	ND	5.00	μg/L	1/20/2011 1:51:00 PM
1,2-Dibromo-3-chloropropane	. ND	5.00	μg/L	1/20/2011 1:51:00 PM
1,2-Dibromoethane	ND	2.00	μg/L	1/20/2011 1:51:00 PM
1,2-Dichlorobenzene	ND	5.00	μġ/L	1/20/2011 1:51:00 PM
1,2-Dichloroethane	ND	5.00	μg/L	1/20/2011 1:51:00 PM
1,2-Dichloropropane	ND	5.00	μg/L	1/20/2011 1:51:00 PM
1,3,5-Trimethylbenzene	ND .	5.00	μg/L	1/20/2011 1:51:00 PM
1,3-Dichlorobenzene	ND	5.00	μg/L	1/20/2011 1:51:00 PM
1,3-Dichloropropane	ND	5.00	μg/L	1/20/2011 1:51:00 PM
1,4-Dichlorobenzene	. ND	5.00	μg/L	1/20/2011 1:51:00 PM
2,2-Dichloropropane	ND	5.00	μg/L	1/20/2011 1:51:00 PM
2-Butanone	. ND	100	μg/L	1/20/2011 1:51:00 PM
2-Chlorotoluene	ND	5.00	μg/L	1/20/2011 1:51:00 PM
2-Hexanone	ND	100	μg/L	1/20/2011 1:51:00 PM
4-Chlorotoluene	ND	5.00	μg/L	1/20/2011 1:51:00 PM
4-Isopropyltoluene	ND	5.00	μg/L	1/20/2011 1:51:00 PM
4-Methyl-2-pentanone	ND	100	μg/L	1/20/2011 1:51:00 PM
Acetone	ND	100	μg/L	1/20/2011 1:51:00 PM
Benzene	ND	5.00	μg/L	1/20/2011 1:51:00 PM
Bromobenzene	ND	5.00	μg/L	1/20/2011 1:51:00 PM
Bromochloromethane	ND	5.00	μg/L	1/20/2011 1:51:00 PM
Bromodichloromethane	ND	5.00	μg/L	1/20/2011 1:51:00 PM
Bromoform	ND	5.00	μg/L	1/20/2011 1:51:00 PM
Bromomethane	ND	5.00	μg/L	1/20/2011 1:51:00 PM
Carbon disulfide	ND	5.00	μg/L	1/20/2011 1:51:00 PM
Carbon tetrachloride	ND	5.00	μg/L	1/20/2011 1:51:00 PM
Chlorobenzene	ND	5.00	μg/L	1/20/2011 1:51:00 PM
Chloroethane	ND	5.00	μg/L	1/20/2011 1:51:00 PM
Chloroform	ND	5.00	μg/L	1/20/2011 1:51:00 PM

^{*} Value exceeds Maximum Contaminant Level

E Value above quantitation range

J Analyte detected below quantitation limits

S Spike Recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

CLIENT: HZW Environmental Consultants

Lab Order: 1101019

Project: Strongsville - H10013-11

Lab ID: 1101019-002A **Date Received:** 1/19/2011

Tag Number:

Client Sample ID: MW-C

Collection Date: 1/14/2011 1:55:00 PM
Matrix: AQUEOUS

Analyses	Result	Limit Qual	Units	Date Analyzed
VOLATILE ORGANIC COMPOUNDS	S IN WATER	SW8260A	(SW5030A)	Analyst: TM
Chloromethane	ND	5.00	μg/L	1/20/2011 1:51:00 PM
cis-1,2-Dichloroethene	ND	5.00	μg/L	1/20/2011 1:51:00 PM
cis-1,3-Dichloropropene	· ND	5.00	μg/L	1/20/2011 1:51:00 PM
Dibromochloromethane	ND	5.00	μg/L	1/20/2011 1:51:00 PM
Dibromomethane	ND	5.00	μg/L	1/20/2011 1:51:00 PM
Dichlorodifluoromethane	ND	5.00	μg/L	1/20/2011 1:51:00 PM
Ethylbenzene	N D	5.00	μg/L	1/20/2011 1:51:00 PM
Hexachlorobutadiene	N D	5.00	μg/L	1/20/2011 1:51:00 PM
Isopropylbenzene	N D	5.00	μg/L	1/20/2011 1:51:00 PM
m,p-Xylene	ND	5.00	μg/L	1/20/2011 1:51:00 PM
Methyl tert-butyl ether	ND	5.00	μg/L	1/20/2011 1:51:00 PM
Methylene chloride	ND	5.00	μg/L	1/20/2011 1:51:00 PM
Naphthalene	ND	5.00	μg/L	1/20/2011 1:51:00 PM
n-Butylbenzene	ND	5.00	μg/L	1/20/2011 1:51:00 PM
n-Propylbenzene	N D	5.00	μg/L	1/20/2011 1:51:00 PM
o-Xylene	ND	5.00	μg/L	1/20/2011 1:51:00 PM
sec-Butylbenzene	N D	5.00	μg/L	1/20/2011 1:51:00 PM
Styrene	N D	5.00	μg/L	1/20/2011 1:51:00 PM
tert-Butylbenzene	ND	5.00	μg/L	1/20/2011 1:51:00 PM
Tetrachloroethene	ND	5.00	μg/L	1/20/2011 1:51:00 PM
Toluene	ND	5.00	μg/L	1/20/2011 1:51:00 PM
trans-1,2-Dichloroethene	ND	5.00	μg/L	1/20/2011 1:51:00 PM
trans-1,3-Dichloropropene	· ND	5.00	μg/L	1/20/2011 1:51:00 PM
Trichloroethene	ND	5.00	μg/L	1/20/2011 1:51:00 PM
Trichlorofluoromethane	ND	5.00	μg/L	1/20/2011 1:51:00 PM
Vinyl acetate	ND ND	100	μg/L	1/20/2011 1:51:00 PM
Vinyl chloride	ND	2.00	μg/L	1/20/2011 1:51:00 PM
Surr: 1,2-Dichloroethane d4	95.4	78.2-129	%REC	1/20/2011 1:51:00 PM
Surr: Bromofluorobenzene	101	83-120	%REC	1/20/2011 1:51:00 PM
Surr: Toluene-d8	100	90.3-117	%REC	1/20/2011 1:51:00 PM

^{*} Value exceeds Maximum Contaminant Level

E Value above quantitation range

J Analyte detected below quantitation limits

S Spike Recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

CLIENT: HZW Environmental Consultants

Lab Order: 1101019

Project:

Strongsville - H10013-11

Client Sample ID: MW-D

Tag Number:

Collection Date: 1/14/2011 12:25:00 PM

Lab ID: 1101019-003A Date Received: 1/19/2011 Matrix: AQUEOUS

Analyses	Result	Limit Qu	al Units	Date Analyzed
VOLATILE ORGANIC COMPOUNDS	IN WATER	SW8260	A (SW5030A)	Analyst: TM
1,1,1,2-Tetrachloroethane	ND	5.00	μg/L	1/20/2011 2:28:00 PM
1,1,1-Trichloroethane	ND	5.00	μg/L	1/20/2011 2:28:00 PM
1,1,2,2-Tetrachloroethane	ND :	5.00	μg/L	1/20/2011 2:28:00 PM
1,1,2-Trichloroethane	ND	5.00	μg/L	1/20/2011 2:28:00 PM
1,1-Dichloroethane	ND	5.00	μg/L	1/20/2011 2:28:00 PM
1,1-Dichloroethene	ND	5.00	μg/L	1/20/2011 2:28:00 PM
1,1-Dichloropropene	· ND	5.00	μg/L	1/20/2011 2:28:00 PM
1,2,3-Trichlorobenzene	ND	5.00	μg/L	1/20/2011 2:28:00 PM
1,2,3-Trichloropropane	ND	5.00	μg/L	1/20/2011 2:28:00 PM
1,2,4-Trichlorobenzene	ND	5.00	μg/L	1/20/2011 2:28:00 PM
1,2,4-Trimethylbenzene	ND	5.00	μg/L	1/20/2011 2:28:00 PM
1,2-Dibromo-3-chloropropane	ND	5.00	μg/L	1/20/2011 2:28:00 PM
1,2-Dibromoethane	ND	2.00	μg/L	1/20/2011 2:28:00 PM
1,2-Dichlorobenzene	ND	5.00	μg/L	1/20/2011 2:28:00 PM
1,2-Dichloroethane	ND	5.00	μg/L	1/20/2011 2:28:00 PM
1,2-Dichloropropane	ND	5.00	μg/L	1/20/2011 2:28:00 PM
1,3,5-Trimethylbenzene	,ND	5.00	μg/L	1/20/2011 2:28:00 PM
1,3-Dichlorobenzene	ND	5.00	μg/L	1/20/2011 2:28:00 PM
1,3-Dichloropropane	ND	5.00	μg/L	1/20/2011 2:28:00 PM
1,4-Dichlorobenzene	ND	5.00	μg/L	1/20/2011 2:28:00 PM
2,2-Dichloropropane	. ND	5.00	μg/L	1/20/2011 2:28:00 PM
2-Butanone	· · · ND	100	μg/L	1/20/2011 2:28:00 PM
2-Chlorotoluene	ND	5.00	μg/L	1/20/2011 2:28:00 PM
2-Hexanone	ND	100	μg/L	1/20/2011 2:28:00 PM
4-Chlorotoluene	ND	5.00	μg/L	1/20/2011 2:28:00 PM
4-Isopropyltoluene	ND.	5.00	μg/L	1/20/2011 2:28:00 PM
4-Methyl-2-pentanone	ND	100	µg/L	1/20/2011 2:28:00 PM
Acetone	ND	100	μg/L	1/20/2011 2:28:00 PM
Benzene	ND	5.00	μg/L	1/20/2011 2:28:00 PM
Bromobenzene	ND ND	5.00	µg/L	1/20/2011 2:28:00 PM
Bromochloromethane	. ND	5.00	μg/L	1/20/2011 2:28:00 PM
Bromodichloromethane	ND	5.00	μg/L	1/20/2011 2:28:00 PM
Bromoform	ND	5.00	μg/L	1/20/2011 2:28:00 PM
Bromomethane	ND	5.00	µg/L	1/20/2011 2:28:00 PM
Carbon disulfide	ND	5.00	μg/L	1/20/2011 2:28:00 PM
Carbon tetrachloride	ND	5,00	μg/L	1/20/2011 2:28:00 PM
Chlorobenzene	ND	5.00	μg/L	1/20/2011 2:28:00 PM
Chloroethane	ND	5.00	μg/L	1/20/2011 2:28:00 PM
Chloroform	ND ND	5.00	μg/L	1/20/2011 2:28:00 PM

^{*} Value exceeds Maximum Contaminant Level

E Value above quantitation range

J Analyte detected below quantitation limits

S Spike Recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

CLIENT:

HZW Environmental Consultants

Client Sample ID: MW-D

Lab Order:

1101019

Tag Number:

Project:

Strongsville - H10013-11

Collection Date: 1/14/2011 12:25:00 PM

Lab ID:

1101019-003A

Date Received: 1/19/2011

Matrix: AQUEOUS

Analyses	Result	Limit Qual	Units	Date Analyzed
VOLATILE ORGANIC COMPOUNDS IN \	WATER	SW8260A	(SW5030A)	Analyst: TM
Chloromethane	ND	5.00	µg/L	1/20/2011 2:28:00 PM
cis-1,2-Dichloroethene	683	5.00	µg/L	1/20/2011 2:28:00 PM
cis-1,3-Dichloropropene	ND	5.00	μg/L	1/20/2011 2:28:00 PM
Dibromochloromethane	ND	5.00	μg/L	1/20/2011 2:28:00 PM
Dibromomethane	ND	5.00	μg/L	1/20/2011 2:28:00 PM
Dichlorodifluoromethane	ND	5.00	μg/L	1/20/2011 2:28:00 PM
Ethylbenzene	ND	5.00	μg/L	1/20/2011 2:28:00 PM
Hexachlorobutadiene	ND	5.00	μg/L	1/20/2011 2:28:00 PM
Isopropylbenzene	ND	5.00	μg/L	1/20/2011 2:28:00 PM
m,p-Xylene	ND	5.00	μg/L	1/20/2011 2:28:00 PM
Methyl tert-butyl ether	ND	5.00	μg/L	1/20/2011 2:28:00 PM
Methylene chloride	ND	5.00	μg/L	1/20/2011 2:28:00 PM
Naphthalene	ND	5.00	μg/L	1/20/2011 2:28:00 PM
n-Butylbenzene	ND	5.00	μg/L	1/20/2011 2:28:00 PM
n-Propylbenzene	ND	5.00	μg/L	1/20/2011 2:28:00 PM
o-Xylene	ND	5.00	μg/L	1/20/2011 2:28:00 PM
sec-Butylbenzene	ND	5.00	μg/L	1/20/2011 2:28:00 PM
Styrene	ND	5.00	μg/L	1/20/2011 2:28:00 PM
tert-Butylbenzene	ND	5.00	μg/L	1/20/2011 2:28:00 PM
Tetrachloroethene	9.81	5.00	μg/L	1/20/2011 2:28:00 PM
Toluene	. ND	5.00	μg/L	1/20/2011 2:28:00 PM
trans-1,2-Dichloroethene	18.3	5.00	μg/L	1/20/2011 2:28:00 PM
trans-1,3-Dichloropropene	ND	5.00	μg/L	1/20/2011 2:28:00 PM
Trichloroethene	205	5.00	μg/L	1/20/2011 2:28:00 PM
Trichlorofluoromethane	ND .	5.00	μg/L	1/20/2011 2:28:00 PM
Vinyl acetate	, ND	100	μg/L	1/20/2011 2:28:00 PM
Vinyl chloride	120	2.00	μg/L	1/20/2011 2:28:00 PM
Surr: 1,2-Dichloroethane d4	95.5	78.2-129	%REC	1/20/2011 2:28:00 PM
Surr: Bromofluorobenzene	100	83-120	%REC	1/20/2011 2:28:00 PM
Surr: Toluene-d8	100	90.3-117	%REC	1/20/2011 2:28:00 PM

^{*} Value exceeds Maximum Contaminant Level

E Value above quantitation range

J Analyte detected below quantitation limits

S Spike Recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

CLIENT:

HZW Environmental Consultants

Lab Order: 1101019

Project: Strongsville - H10013-11

Lab ID: 1101019-004A **Date Received:** 1/19/2011

Date: 25-Jan-11

Client Sample ID: MW-E

Tag Number:

Collection Date: 1/14/2011 12:20:00 PM

Matrix: AQUEOUS

Analyses	Result	Limit Q	ual Units	Date Analyzed
VOLATILE ORGANIC COMPOUNDS	IN WATER	SW8260	A (SW5	030A) Analyst: TM
1,1,1,2-Tetrachloroethane	. ND	500	μg/L	1/21/2011 9:07:00 PM
1,1,1-Trichloroethane	ND	500	μg/L	1/21/2011 9:07:00 PM
1,1,2,2-Tetrachloroethane	ND	500	μg/L	1/21/2011 9:07:00 PM
1,1,2-Trichloroethane	ND	500	μg/L	1/21/2011 9:07:00 PM
1,1-Dichloroethane	ND	500	μg/L	1/21/2011 9:07:00 PM
1,1-Dichloroethene	ND	500	μg/L	1/21/2011 9:07:00 PM
1,1-Dichloropropene	ND	500	μg/L	1/21/2011 9:07:00 PM
1,2,3-Trichlorobenzene	ND	500	μg/L	1/21/2011 9:07:00 PM
1,2,3-Trichloropropane	ND	500	μg/L	1/21/2011 9:07:00 PM
1,2,4-Trichlorobenzene	ND	500	μg/L	1/21/2011 9:07:00 PM
1,2,4-Trimethylbenzene	ND	500	μg/L	1/21/2011 9:07:00 PM
1,2-Dibromo-3-chloropropane	ND .	500	μg/L	1/21/2011 9:07:00 PM
1,2-Dibromoethane	ND	200	μg/L	1/21/2011 9:07:00 PM
1,2-Dichlorobenzene	ND	500	μg/L	1/21/2011 9:07:00 PM
1,2-Dichloroethane	ND	500	μg/L	1/21/2011 9:07:00 PM
1,2-Dichloropropane	ND	500	μg/L	1/21/2011 9:07:00 PM
1,3,5-Trimethylbenzene	ND	500	μg/L	1/21/2011 9:07:00 PM
1,3-Dichlorobenzene	ND	500	μg/L	1/21/2011 9:07:00 PM
1,3-Dichloropropane	ND	500	µg/L	1/21/2011 9:07:00 PM
1,4-Dichlorobenzene	ND	500	µg/L	1/21/2011 9:07:00 PM
2,2-Dichloropropane	ND	500	μg/L	1/21/2011 9:07:00 PM
2-Butanone	ND	10000	μg/L	1/21/2011 9:07:00 PM
2-Chlorotoluene	ND	500	μg/L	1/21/2011 9:07:00 PM
2-Hexanone	ND	10000	μg/L	1/21/2011 9:07:00 PM
4-Chlorotoluene	ND	500	μg/L	1/21/2011 9:07:00 PM
4-Isopropyltoluene	ND	500	μg/L	1/21/2011 9:07:00 PM
4-Methyl-2-pentanone	ND	10000	µg/L	1/21/2011 9:07:00 PM
Acetone	ND	10000	µg/L	1/21/2011 9:07:00 PM
Benzene	ND	500	µg/L	1/21/2011 9:07:00 PM
Bromobenzene	ND .	500	µg/L	1/21/2011 9:07:00 PM
Bromochloromethane	ND	500	µg/L	1/21/2011 9:07:00 PM
Bromodichloromethane	ND	500	µg/L	1/21/2011 9:07:00 PM
Bromoform	ND	500	µg/L	1/21/2011 9:07:00 PM
Bromomethane	ND	500	µg/L	1/21/2011 9:07:00 PM
Carbon disulfide	ND	500	μg/L	1/21/2011 9:07:00 PM
Carbon tetrachloride	ND	500	μg/L	1/21/2011 9:07:00 PM
Chlorobenzene	ND	500	μg/L	1/21/2011 9:07:00 PM
Chloroethane	ND	500	μg/L	1/21/2011 9:07:00 PM
Chloroform	ND	500	μg/L μg/L	1/21/2011 9:07:00 PM

^{*} Value exceeds Maximum Contaminant Level

E Value above quantitation range

J Analyte detected below quantitation limits

S Spike Recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

CLIENT:

HZW Environmental Consultants

Client Sample ID: MW-E

Lab Order:

1101019

Tag Number:

Project:

Strongsville - H10013-11

Collection Date: 1/14/2011 12:20:00 PM

Lab ID:

1101019-004A

Date Received: 1/19/2011

Matrix: AQUEOUS

Analyses	Result	Limit Qual	Units	Date Analyzed
VOLATILE ORGANIC COMPOUNDS I	N WATER	SW8260A	(SW5030A)	Analyst: TM
Chloromethane	ND	500	µg/L	1/21/2011 9:07:00 PM
cis-1,2-Dichloroethene	2300	500	μg/L	1/21/2011 9:07:00 PM
cis-1,3-Dichloropropene	ND	500	μg/L	1/21/2011 9:07:00 PM
Dibromochloromethane	ND	500	µg/L	1/21/2011 9:07:00 PM
Dibromomethane	ND	500	μg/L	1/21/2011 9:07:00 PM
Dichlorodifluoromethane	ND	500	μg/L	1/21/2011 9:07:00 PM
Ethylbenzene	ND	500	µg/L	1/21/2011 9:07:00 PM
Hexachlorobutadiene	ND	500	µg/L	1/21/2011 9:07:00 PM
Isopropylbenzene	ND	500	μg/L	1/21/2011 9:07:00 PM
m,p-Xylene	ND	500	μg/L	1/21/2011 9:07:00 PM
Methyl tert-butyl ether	ND	500	μg/L	1/21/2011 9:07:00 PM
Methylene chloride	. ND	500	μg/L	1/21/2011 9:07:00 PM
Naphthalene	ND	500	μg/L	1/21/2011 9:07:00 PM
n-Butylbenzene	ND	500	μg/L	1/21/2011 9:07:00 PM
n-Propylbenzene	· ND	500	μg/L	1/21/2011 9:07:00 PM
o-Xylene	ND	500	μg/L	1/21/2011 9:07:00 PM
sec-Butylbenzene	ND	500	μg/L	1/21/2011 9:07:00 PM
Styrene	ND	500	µg/L	1/21/2011 9:07:00 PM
tert-Butylbenzene	ND	500	μg/L	1/21/2011 9:07:00 PM
Tetrachloroethene	48600	500	μg/L	1/21/2011 9:07:00 PM
Toluene	ND	500	μg/L	1/21/2011 9:07:00 PM
trans-1,2-Dichloroethene	ND	500	μg/L	1/21/2011 9:07:00 PM
trans-1,3-Dichloropropene	ND 1	500	μg/L	1/21/2011 9:07:00 PM
Trichloroethene	1670	500	μg/L	1/21/2011 9:07:00 PM
Trichlorofluoromethane	ND	500 .	μg/L	1/21/2011 9:07:00 PM
Vinyl acetate	ND	10000	μg/L	1/21/2011 9:07:00 PM
Vinyl chloride	314	200	μg/L	1/21/2011 9:07:00 PM
Surr: 1,2-Dichloroethane d4	93.5	78.2-129	%REC	1/21/2011 9:07:00 PM
Surr: Bromofluorobenzene	98.5	83-120	%REC	1/21/2011 9:07:00 PM
Surr: Toluene-d8	98.6	90.3-117	%REC	1/21/2011 9:07:00 PM

Value exceeds Maximum Contaminant Level

E Value above quantitation range

I Analyte detected below quantitation limits

S Spike Recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

GEO Analytical, Inc.

HZW Environmental Consultants CLIENT:

1101019 Work Order:

TestCode: 8260_W

ANALYTICAL QC SUMMARY REPORT

Strongsville - H10013-11 Project:

			,								
Sample ID: MB-10667	SampType: MBLK	TestCo	TestCode: 8260_W	Units: µg/L		Prep Date:	1/20/2011		RunNo: 15421	5421	
Client ID: ZZZZZ	Batch ID: 10667	Test	TestNo: SW8260A	(SW5030A)	Ā	Analysis Date:	1/20/2011		SeqNo: 271390	71390	
Analyte	Result	POL	SPK value	SPK Ref Val	%REC 1	LowLimit Hi	HighLimit RPD Ref Val	ef Val	%RPD	RPDLimit	Qual
1,1,1,2-Tetrachloroethane	QN	5.00									
1,1,1-Trichloroethane	QN	5.00									
1,1,2,2-Tetrachioroethane	QN	2.00									
1,1,2-Trichloroethane	QN	2.00			. *						
1,1-Dichloroethane	QN	5.00						٠.			
1,1-Dichloroethene	QN .	5.00									
1,1-Dichloropropene	Q	5.00									
1,2,3-Trichlorobenzene	QN	2.00									
1,2,3-Trichloropropane	QN	5.00									
1,2,4-Trichlorobenzene	QN	5.00								-	
1,2,4-Trimethylbenzene	QN	5.00	V								
1,2-Dibromo-3-chloropropane	ON .	5.00	,								-
1,2-Dibromoethane	QN	2.00	ne.								
1,2-Dichlorobenzene	QN	2,00									
1,2-Dichloroethane	QN	5.00									
1,2-Dichloropropane	QN	5.00									
1,3,5-Trimethylbenzene	QN .	2.00									
1,3-Dichlorobenzene	ON .	5.00									
1,3-Dichloropropane	QN	5.00									
1,4-Dichlorobenzene	QN	2.00		,				•			
2,2-Dichloropropane	ON .	2.00									
2-Butanone	QN	100									
2-Chlorotoluene	QN.	5.00							•		
2-Hexanone	ON .	100						٠.			
4-Chlorotoluene	QN	5.00									
4-Isopropyltoluene	QN	2.00							,		
4-Methyl-2-pentanone	QN	100			•						
Acetone	ON.	100									
Benzene	QN .	5.00									

Analyte detected below quantitation limits Spike Recovery outside accepted recovery limits

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

H. R

E Value above quantitation range ND Not Detected at the Reporting Limit Value above quantitation range

Qualifiers:

HZW Environmental Consultants 1101019

CLIENT:
Work Order:
Project:

Strongsville - H10013-11

ANALYTICAL QC SUMMARY REPORT

TestCode: 8260_W

Sample ID: MB-10667	SampType: MBLK	MBLK	TestC	TestCode: 8260_W	Units: µg/L	Pre	Prep Date:	1/20/2011	RunNo: 15421	121	
Client ID: ZZZZZ	Batch ID: 10667	10667	Ţ	TestNo: SW8260A	(SW5030A)	Analysi	Analysis Date: 1	1/20/2011	SeqNo: 271390	1390	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC LowLimit		HighLimit RPD Ref Val	%RPD	RPDLimit Qual	<u></u>
Bromobenzene		QN	5.00								
Bromochloromethane		Q	5.00								
Bromodichloromethane		Q	5.00			16					
Bromoform		Q	5.00								
Bromomethane		N	5.00					•			
Carbon disulfide		Ω	5.00								
Carbon tetrachloride			5.00					٠			
Chlorobenzene		N	5.00								
Chloroethane			5.00								
Chloroform		Q	5.00								
Chloromethane		Q.	5.00					•			
cis-1,2-Dichloroethene		Q	5.00								
cis-1,3-Dichloropropene		N	5.00								
Dibromochloromethane		Q	5.00		•						
Dibromomethane		Q	5.00							,	
Dichlorodifluoromethane		2	5.00								
Ethylbenzene		Q	5.00			• •					
Hexachlorobutadiene		Q	5.00	 :			:		•		
Isopropylbenzene		2	5.00								
m,p-Xylene		Q	2.00								
Methyl tert-butyl ether		2	2.00			•					
Methylene chloride		9 ,	5.00	•	•						
Naphthalene		2	5.00								
n-Butylbenzene		2	2.00								
n-Propylbenzene		Q	5.00								
o-Xylene		Q	5.00								
sec-Butylbenzene		Q	5.00			- 4					
Styrene		Q.	5.00								
tert-Butylbenzene		Q	5.00								
Tetrachloroethene		Q	5.00								
Toluene		Q	5.00						,		
Qualifiers: E Value abo	Value above quantitation range) 26		H Holdin	Holding times for preparation or analysis exceeded	n or analysis exceed	led	J Analyte detected	Analyte detected below quantitation limits	on limits	
ND Not Detec	Not Detected at the Reporting Limit	Limit	,	R RPD o	RPD outside accepted recovery limits	ery limits		S Spike Recovery	Spike Recovery outside accepted recovery limits	ecovery limits	

HZW Environmental Consultants 1101019 CLIENT:

Work Order:

Strongsville - H10013-11 Project:

ANALYTICAL QC SUMMARY REPORT

TestCode: 8260_W

Sample ID: MB-10667	SampType: MBLK	Ĺĸ	TestC	TestCode: 8260 W	Units: µg/L		Prep Date:	1/20/2011	RunNo: 15421	
Client ID: ZZZZZ	Batch ID: 10667	29	Tes	TestNo: SW8260A	(SW5030A)		Analysis Date:	1/20/2011	SeaNo: 271390	
		Result	POL	SPK value	SPK Ref Val	%REC	LowLimit	.□	%RPD RPDI imit	leno
- C.			! !) ! !			- 1	; . {
trans-1,2-Dichloroethene		QN Q	5.00						,	
trans-1,3-Dichloropropene		2	2.00							
Trichloroethene		ᄝ	5.00							
Trichlorofluoromethane		Q	5.00				•			
Vinyl acetate		Q	100							
Vinyl chloride		N Q	2.00							
Surr: 1,2-Dichloroethane d4	<i>ਲ</i>	38.30	5.00	40	0	95.7	78.2	129		
Surr: Bromofluorobenzene	ř	39.42	5.00	40	. 0	98.5	83	120		
Surr: Toluene-d8	4(40.42	5.00	40	0	101	90.3	117		
Sample ID: LCS-10667	SampType: LCS	S	TestC	TestCode: 8260_W	Units: µg/L		Prep Date:	1/20/2011	RunNo: 15421	
Client ID: ZZZZZ	Batch ID: 10667	299	Tes	TestNo: SW8260A	(SW5030A)		Analysis Date:	1/20/2011	SeqNo: 271391	
Analyte	ă.	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
1,1-Dichloroethene	4	45.66	5.00	40	0	114	72.8	122		
Benzene	4	41.53	5.00	40	0	40	82.5	116	-	
Chlorobenzene	4	43.27	5.00	40	0	108	87.1	120		
Toluene	ř	39.53	5.00	40	0	98.8	84.9	118	-	
Trichloroethene	4	42.47	5.00	40	0	106	80.9	122	•	
Surr: 1,2-Dichloroethane d4	ਲ	39.04	5.00	40	0	97.6	78.2	129		
Surr: Bromofluorobenzene	4	41.50	5.00		0	104	83	120	• •	
Surr: Toluene-d8	€ .	39.46	2.00	40	0	98.7	90.3	117		
Sample ID: 1101019-001AMS	SampType: MS		 TestC	TestCode: 8260_W	Units: µg/L		Prep Date:	1/20/2011	RunNo: 15421	
Client ID: MW-B	Batch ID: 10667	299	Tes	TestNo: SW8260A	(SW5030A)		Analysis Date:	1/20/2011	SeqNo: 271395	
Analyte	ŭ.	Result	POL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
1,1-Dichloroethene	ŭ	55.85	5.00	46.5	0	120	63	145		
Benzene	ĬŎ.	50.44	5.00	46.5	0	108	69	141		
Chlorobenzene	io.	52.42	5.00	46.5	0.186	112	71.3	140	· .	
						-				
Qualifiers: E Value above	Value above quantitation range	;		H. Holdin	Holding times for preparation or analysis exceeded DD outside accepted recovery limits	n or analysı erv limite	s exceeded	S Spike Recovery or	Analyte detected below quantitation limits Snike Recovery outside accented recovery limits	
	a di lite iveporung di	1111			uiside geerpred teerr	ci i i i i i			thatte december tecertary times	

CLIENT: HZW Environmental Consultants

Work Order: 1101019

Strongsville - H10013-11

Project:

TestCode: 8260_W

ANALYTICAL QC SUMMARY REPORT

Sample ID: 1101019-001AMS	SampType: MS	TestCode: 8260_W	W_0	Units: µg/L		Prep Date:	Prep Date: 1/20/2011	RunNo: 15421	-
Client ID: MW-B	Batch ID: 10667	TestNo: SW	SW8260A	(SW5030A)	•	Analysis Date: 1/20/2011	1/20/2011	SeqNo: 271395	
Analyte	Result	POL SPK	value SF	SPK value SPK Ref Val	%REC	LowLimit H	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual	it Qual
Toluene	49.68	5.00	46.5	0	107	2.79	138		
Trichloroethene	51.88	5.00	46.5	0	112	67.1	146		
Surr: 1,2-Dichloroethane d4	39.41	2.00	4	0	98.5	78.2	129	:	
Surr: Bromofluorobenzene	41.93	5.00	4	0	105	83	120		
Surr: Toluene-d8	40.13	2.00	40	0	100	90.3	117		
Sample ID: 1101019-001AMSD SampType: MSD	SampType: MSD	TestCode: 8260_W	M ₀	Units: µg/L		Prep Date:	Prep Date: 1/20/2011	RunNo: 15421	

				-	,								ı
Sample ID: 1101019-001AMSD	SampType: MSD	MSD	TestCoc	de: 8260_W	Units: µg/L		Prep Date:	te: 1/20/2011		RunNo: 15421	121		
Client ID: MW-B	Batch ID: 10667	10667	Test	TestNo: SW8260A	(SW5030A)		Analysis Date:	te: 1/20/2011		SeqNo: 271396	1396		
Analyte		Result	POL	SPK value	SPK Ref Val	%REC	LowLimit	%REC LowLimit HighLimit RPD Ref Val	RPD Ref Val	%RPD	RPDLimit	Qual	
1,1-Dichloroethene		55.29	5.00	46.5	0	119	63	145	55.85	0.999	20		1
Benzene		50.62	2.00	46.5	0	109	69	141	50.44	0.364	20		
Chlorobenzene		51.04	5.00	46.5	0.186	109	71.3	140	52.42	2.66	20		
Toluene		48.36	2.00	46.5	0	104	67.7	138	49.68	2.70	20		
Trichloroethene		49.91	5.00	46.5	0	107	67.1	146	51.88	3.86	50		
Surr: 1,2-Dichloroethane d4		39.78	5.00	40	0	99.5	78.2	129	0	0	0		
Surr: Bromofluorobenzene		40.69	5.00	40	0	102	83	120	0 .	0.	0		
Surr: Toluene-d8	٠	40.40	5.00	40	0	101	90.3	117	0 .	0	0	,	

Holding times for preparation or analysis exceeded RPD outside accepted recovery limits H & E Value above quantitation range ND Not Detected at the Reporting Limit Qualifiers:

J Analyte detected below quantitation limits
S Spike Recovery outside accepted recovery limits

CLIENT:

HZW Environmental Consultants

Work Order:

1101019

Project:

Strongsville - H10013-11

Test Code:

8260_W

QC SUMMARY REPORT SURROGATE RECOVERIES

Matrix: W

Sample ID	BR2FBZ	BZMED8	DCAD4	
1101019-001A	99.3	101	96.7	
1101019-001AMS	105	100	98.5	
1101019-001AMSD	102	101	99.5	
1101019-002A	101	100	95.4	·
1101019-003A	100	100	95.5	
1101019-004A	98.5	98.6	93.5	
LCS-10667	104	98.7	97.6	
MB-10667	98.5	101	95.7	

_Acronym	Surrogate		QC Limits
BR2FBZ	= Bromofluorobenze	ne ,	83-120
BZMED8	= Toluene-d8		90.3-117
DCAD4	= 1,2-Dichloroethane	e d4	78.2-129
		•	
	*		
	,		

^{*} Surrogate recovery outside acceptance limits

о С ر س Analytic 0 ш

9263 Ravenna Rd. Suite A-7 Twinsburg, OH 44087 Phone Number 330 963 6990 Fax Number 330 963 6975 customerservice@geoanalytical.com

	1
_	
ш	
m	
$\overline{}$	
U	
()	
\sim	
щ	
Œ	
>	
물	
O	
ŠŤO	Ċ
20	
$\underline{\mathbf{v}}$	
75	
H	
=	
O	
Ĺ	
Z	
⋖	
T	
六	
U	

COMPANY NAME AND ADDRESS	NY NND H SS	2W t	M	14.0	HZW Environmental		PROJ	ECT: S	PROJECT: Strongsville - H10013-11	Ville OR REP	- ң lo оят то:	013-11 M.KM	PROJECT: Strongsville - H10013-11 PROJECT MANAGER OR REPORT TO: M. KNECKA+ /D. WEFZE!	
SAMPLER SIGNATURES:	ER 'URES:	Tom Fuhrman	13	7 × V	MRM	Š. g			Ani	alysis R	Analysis Requested	٩		>
STA.#	DATE	TIME	COMP.	GRAB.	STATION LOCATION	CON- TAINERS	929 5001						/ NOTES	
	11-1-1-1	12:30		×	NW-B	3	X	_						
		(3:55		X	MW-C	3	×	7						
		8.2		X	MW-D	3	. ×	3						
	+	02:6)		X	MW-E	W	乂	4					8 .	
		. ,												
						. •								
								:						
							t.				: .		<i>:</i>	
						÷		-						
					·									
	4					-	200	10 T						
ч				`	· ·		., .							
CHAIN	OF CUST	oby sic	NY L	J. J.	CHAIN OF CUSTODY SIGNATURES (Name, Company, Date, Time)							రర్	COOLER TEMP	O O

	_	
11-61-1	118811	11118
Relinquished By:	Received By:	12 インフログ ノース・ク
_		

ģ	
<u>e</u> d	B.
nish	/ed
<u> </u>	ceiv
9	æ

2. Relinquished By:

Received By:

Received for Laboratory B 4. Submitted to Laboratory By